Electronic Supplementary Information

Probing Metal/High-Entropy Perovskite Heterointerface for Efficient and Sustainable CO₂ Electroreduction

Yan Zhu,^a Nan Zhang,^a Wenyu Zhang,^a Yansheng Gong,^a Rui Wang,^a Huanwen

Wang,^a Jun Jin,^{a,c} Ling Zhao,^{b,c} and Beibei He ^{a,c *}

^a Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan,

430074, China.

^b School of Marine Science and Engineering, Hainan University, Haikou 570228, PR China.

^c Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518057, China.

*Corresponding author E-mail: hebb@cug.edu.cn (Beibei He)

Fig. S1 The microstructure of (a)oxidized SFVMNT, and (b) reduced NiFe@SFVMNT.

Fig. S2 The line scanning of the exsolved alloy particles.

Fig. S3 Gibbs free energies for the reduction reactions of oxides at 850 °C.

Fig. S4 EPR spectra of the oxidized SFVMNT and NiFe@SFVMNT.

Fig. S5 SEM images (a and c) and the corresponding particle size analyses (b and d) of the tested strips.

Fig. S6 CO production and Faraday efficiency of NiFe@SFVMNT based SOECs under different voltages.

Fig. S7 (a-b) SEM images of the NiFe@SFVMNT cathode after CO₂ electrolysis, and (b-d) EDX line scan for the cell cross-section after the long-term test from electrodes to electrolytes.

Fig. S8 The TEM-EDS mapping images of SOEC cross-section after long-term test.

Fig. S9 The TEM-EDS mapping images of NiFe@SFVMNT cathode after long-term test.

Fig. S10 XPS spectra of (a) Fe 2p, (b) Ni 2p, (c) V 2p, (d) Mo 3d, (e) Ti 2p, (f) O 1s after the long-

term durability test.

Fig. S11 (a) Schematic of exsolution process with relative energy of the slab, (b) Comparison of segregation and co-segregation energies with V, Mo and Ti.

Fig. S12 Constructed oxygen defective on NiFe@SFVMNT surfaces.

Fig. S13 The adsorption structure of CO_2 on the surface of (a) SFVMNT and (b) NiFe@SFVMNT.

Fig. S14 Adsorption configuration of reaction intermediates on NiFe@SFVMNT surface for

CO₂RR.

Fig. S15 The Bader charges comparison of metal atoms on the surface (001) of perovskite before (a) and after CO₂ adsorption (b).

Fig. S16 Electron localization function (ELF) for the CO₂-adsorbed on the (101) surface of SFVMNT (left) and NiFe@SFVMNT (right).

Fig. S17 (a) TPOS and (b) other elements POS diagrams.

Element	Oxidized valence	Ionic radius (nm)	χ
Sr	+2	0.144	1
Fe	+3	0.078	1.8
V	+5	0.054	1.6
Мо	+6	0.062	1.8
Ni	+2	0.072	1.9
Ti	+4	0.0605	1.5
0	-2	0.140	3.5

Table S1 Ionic radius and electronegativity of NiFe@SFVMNT sample.

Sample	Element	Element content (mol)	Atomic content (%)
	Sr	0.4403	44.77
	Fe	0.0974	9.91
NiFe@SFVMNT	V	0.0968	9.84
-	Mo	0.1036	10.53
	Ni	0.1029	10.46
	Ti	0.1425	14.49

 Table S2 ICP measurement of NiFe@SFVMNT sample.

	Space group	a (Å)	b (Å)	c (Å)	R _p (%)	R _{exp} (%)	χ ²
NiFe@	NiFe: Fm-3m	3.905	3.905	3.905	10.9	5.57	6.89
SFVMNT	SFVMNT: <i>Pm-3m</i>						

Table S3 Lattice parameters of NiFe@SFVMNT derived from XRD Rietveld refinement.

	<a-0></a-0>			<b-o></b-o>			<abe></abe>
SFVMNT	<sr-o></sr-o>	<fe-o></fe-o>	<v-0></v-0>	<mo-o></mo-o>	<ni-o></ni-o>	<ti-o></ti-o>	
(kJ mol ⁻¹)	-75.43	-36.04	-57.45	-64.56	-27.58	-89.5	-350.56

Table S4 Average bonding energy of metal-oxygen for SFVMNT samples.

	Oxidized SFVMNT	NiFe@SFVMNT
Fe ⁰ (at.%)	0	20.47
Fe ²⁺ (at.%)	62.30	60.06
Fe ³⁺ (at.%)	37.70	19.47
Average valence of Fe	2.37	1.79
Ni ⁰ (at.%)	0	22.90
Ni ²⁺ (at.%)	100	77.10
Average valence of Ni	2	1.54
V ⁴⁺ (at.%)	0	52.31
V ⁵⁺ (at.%)	100	47.69
Average valence of V	5	4.52
Mo ⁴⁺ (at.%)	0	7.45
Mo ⁵⁺ (at.%)	0	15.36
Mo ⁶⁺ (at.%)	100	77.19
Average valence of Mo	6	5.70
Ti ³⁺ (at.%)	0	25.32
Ti ⁴⁺ (at.%)	100	74.68
Average valence of Ti	4	3.75

Table S5 XPS analysis of oxidized SFVMNT and reduced NiFe@SFVMNT.

	5	1		
Cathode	Feeding gas	Electrolyte/anode	Current density (A·cm ⁻²)	Refs
$FeNi_3@La_{0.6}Sr_{0.4}Fe_{0.8}Ni_{0.2}O_{3-\delta}$ -GDC	pure CO ₂	LSGM/LSFN-GDC	~0.65	1
$Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$	pure CO ₂	LSGM/LSCF-SDC	0.71	2
$FeNi_3 @Sr_2Fe_{1.35}Mo_{0.45}Ni_{0.2}O_{6-\delta}-GDC$	95% CO ₂ /N ₂	LSGM/LSCF-GDC	~0.90	3
$FeNi_3@(PrBa)_{0.95}Fe_{1.6}Ni_{0.2}Nb_{0.2}O_{5+\delta}$	pure CO ₂	LSGM/LSCF	~1.00	4
$CoFe@Pr_{0.4}Sr_{0.6}Co_{0.2}Fe_{0.7}Mo_{0.1}O_{3-\delta}-GDC$	3:7 CO: CO ₂	YSZ/ LSCF-GDC	1.01	5
$CoFe@Sr_2Fe_{1.35}Mo_{0.45}Co_{0.2}O_{6-\delta}-GDC$	95% CO ₂ /N ₂	LSGM/BSCF-GDC	~1.05	6
$NiFe@Sr_{1.97}Fe_{1.5}Mo_{0.5}Ni_{0.1}O_{6-\delta}$	7:3 CO: CO ₂	LSGM/LSCF-SDC	~1.08	7
$Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ -SDC	pure CO ₂	LSGM/LSCF-SDC	1.09	2
$Cu@Sr_{0.975}Ti_{0.7}Cu_{0.2}Mo_{0.1}O_{3-\delta}$	pure CO ₂	LSGM/LSCF	~1.10	8

metal or alloy nanoparticles.

Table S6 Comparison of current densities for CO2 electrolysis obtained at 800 °C and 1.5 V using SFM-based cathodes and typical ceramic cathodes modified with

CoFe@La _{0.4} Sr _{0.6} Co _{0.2} Fe _{0.7} Mo	0.1O _{3-δ} -GDC	95% CO ₂ /N ₂	LSGM/BSCF-GDC	~1.20	9
$Sr_2Fe_{1.4}Mn_{0.1}Mo_{0.5}O_{6-\delta}$	-SDC	pure CO ₂	LSGM/LSCF-SDC	1.35	10
$Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}F$	0.1	pure CO ₂	LSGM/LSCF-SDC	1.36	11
$Sr_{2}Fe_{1.3}Cu_{0.2}Mo_{0.5}O$	6-δ	pure CO ₂	LSGM/LSCF-GDC	1.45	12
NiFe@La _{0.6} Sr _{0.4} Fe _{0.8} M	n _{0.2} O ₃	99% CO ₂ /CO	LSGM/BLC	~1.60	13
$RuFe@Sr_2Fe_{1.4}Ru_{0.1}Mo_{0.5}G$	D _{6-ð} -GDC	95% CO ₂ /N ₂	LSGM/BSCF-GDC	~1.87	14
$NiFe@Sr_2Fe_{0.4}V_{0.4}Mo_{0.4}Ni_{$	_{0.4} Ti _{0.6} O _{3-δ}	99% CO ₂ /CO	LSGM/PBSCF-GDC	1.66	This work

Cathode	Current density	Stability	Refs
	(A cm ⁻²)	(h)	
FeNi3@Sr2Fe1.35Mo0.45Ni0.2O6-&-GDC	~0.90	40	3
$La_{0.6}Sr_{0.4}Fe_{0.9}W_{0.1}O_{3\text{-}\delta\text{-}GDC}$	1.48	50	15
$Ru\text{-}Pr_{0.4}Sr_{0.6}Fe_{0.8}Ru_{0.1}Mo_{0.1}O_{3\text{-}\delta\text{-}}SDC$	0.90	60	16
$Sr_{2}Fe_{1.5}Mo_{0.3}Cu_{0.2}O_{6-\delta}$ -GDC	~2.20	80	17
$CoFe@La_{0.4}Sr_{0.6}Co_{0.2}Fe_{0.7}Mo_{0.1}O_{3-\delta}\text{-}GDC$	~1.20	100	9
$Sr_2FeMo_{2/3}Mg_{1/3}O_{6\text{-}\delta}$	1.40	100	18
$Sr_2Fe_{1.3}Zr_{0.2}Mo_{0.5}O_{6-\delta}$	~0.75	120	19
$Sr_{1.9}Fe_{1.5}Mo_{0.4}Ni_{0.1}O_{6\text{-}\delta}F_{0.1}\text{-}SDC$	2.66	140	20
$Sr_2(Fe_{1.0}Ti_{0.25}Cr_{0.25}Mn_{0.25}Mo_{0.25})O_{6-\delta}$	1.50	160	21
$F_{0.1}$ -La_{0.5}Sr_{0.5}FeO_{6-\delta}	2.58	200	22
$NiFe@Sr_2Fe_{0.4}V_{0.4}Mo_{0.4}Ni_{0.4}Ti_{0.6}O_{3-\delta}$	1.66	200	This work

Table S7 Comparison of long-term stability at 800 $^{\circ}\mathrm{C}$ and 1.5 V with reported typical cathodes.

Element	Before absorption	After absorption
Fel	1.46	1.54
Fe2	1.84	1.09
V1	1.56	1.77
Mo1	1.57	2.19
Ni1	1.09	1.06
Ni2	1.13	-0.03
Ti1	2.29	2.20
Ti2	2.07	1.99
Ti3	1.67	1.94

Table S8 The Bader charges comparison of metal atoms on the surface (001) of perovskite before

and after CO₂ adsorption.

References

- 1. Tian, Yunfeng, Zheng, Haoyu, Zhang, Lingling, Chi, Bo and Jian, *J. Electrochem. Soc.*, 2018, **165**, F17-F23.
- 2. Y. Li, X. Chen, Y. Yang, Y. Jiang and C. Xia, *ACS Sustainable Chem. Eng.*, 2017, **5**, 11403-11412.
- 3. H. Lv, L. Lin, X. Zhang, D. Gao, Y. Song, Y. Zhou, Q. Liu, G. Wang and X. Bao, *J. Mater. Chem. A*, 2019, **7**, 11967-11975.
- 4. M. Ma, X. Yang, C. Xu, R. Ren, J. Qiao, W. Sun, Z. Wang and K. Sun, *Sep. Purif. Technol.*, 2022, **296**, 121411.
- 5. S. Liu, Q. Liu and J.-L. Luo, J. Mater. Chem. A, 2016, 4, 17521-17528.
- 6. H. Lv, L. Lin, X. Zhang, Y. Song, H. Matsumoto, C. Zeng, N. Ta, W. Liu, D. Gao and G. Wang, *Adv. Mater.*, 2020, **32**, 1906193.
- 7. Y. Li, Y. Li, S. Zhang, C. Ren, Y. Jing, F. Cheng, Q. Wu, P. Lund and L. Fan, *ACS Appl. Mater. Interfaces*, 2022, **14**, 9138-9150.
- 8. X. Yang, K. Sun, W. Sun, M. Ma, R. Ren, J. Qiao, Z. Wang, S. Zhen and C. Xu, *J. Eur. Ceram. Soc.*, 2023, **43**, 3414-3420.
- 9. H. Lv, T. Liu, X. Zhang, Y. Song, H. Matsumoto, N. Ta, C. Zeng, G. Wang and X. Bao, *Angew. Chem. Int. Edit.*, 2020, **59**, 15968-15973.
- 10. Y. Jiang, Y. Yang, C. Xia and H. J. M. Bouwmeester, J. Mater. Chem. A, 2019, **7**, 22939-22949.
- 11. Y. Li, Y. Li, Y. Wan, Y. Xie, J. Zhu, H. Pan, X. Zheng and C. Xia, *Adv. Energy Mater.*, 2019, **9**, 1803156.1803151-1803156.1803110.
- 12. C. Xu, S. Zhen, R. Ren, H. Chen, W. Song, Z. Wang, W. Sun and K. Sun, *Chem. Commun.*, 2019, **55**, 8009-8012.
- 13. S. Wang, H. Tsuruta, M. Asanuma and T. Ishihara, *Adv. Energy Mater.*, 2015, **5**, 1401003.
- 14. H. Lv, L. Lin, X. Zhang, R. Li, Y. Song, H. Matsumoto, N. Ta, C. Zeng, Q. Fu and G. Wang, *Nat. Commun.*, 2021, **12**, 5665.
- 15. S. Wang, B. Qian, Y. Tang, Q. Ni, Y. Zheng, H. Chen, L. Ge and H. Yang, *Electrochim. Acta*, 2023, **439**, 141659.
- 16. D. Zhang, W. Yang, Z. Wang, C. Ren, Y. Wang, M. Ding and T. Liu, *Sep. Purif. Technol.*, 2023, **304**, 122287.
- 17. F. He, M. Hou, F. Zhu, D. Liu, H. Zhang, F. Yu, Y. Zhou, Y. Ding, M. Liu and Y. Chen, *Adv. Energy Mater.*, 2022, **12**, 2202175.
- 18. X. Xi, J. Liu, Y. Fan, L. Wang, J. Li, M. Li, J.-L. Luo and X.-Z. Fu, *Nano Energy*, 2021, **82**, 105707.
- 19. L. Zhang, W. Sun, C. Xu, R. Ren, X. Yang, J. Qiao, Z. Wang, S. Zhen and K. Sun, *Appl. Catal. B: Environ.*, 2022, **317**, 121754.
- 20. S. Zhang, Y. Jiang, H. Han, Y. Li and C. Xia, ACS Appl. Mater. Interfaces, 2022, 14, 28854-28864.
- 21. C. Wang, Y. Zhu, Y. Ling, Y. Gong, R. Wang, H. Wang, J. Jin, L. Zhao and B. He, *ACS Appl. Mater. Interfaces*, 2023, **15**, 45905-45914.
- 22. S. Zhang, C. Yang, Y. Jiang, P. Li and C. Xia, J. Energy Chem., 2023, 77, 300-309.