Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Enhancement of single-atom catalytic activity by interlayer charge transfer

in the electride-based heterostructures

Jiahui Tang, Xiaocha Wang, Baozeng Zhou*

Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

*Corresponding Authors

baozeng@tju.edu.cn (B. Zhou)

Fig. S1 The MoS₂/Ca₂N heterostructures and their band structures. The red and blue bubbles depict

the projected band structure of MoS_2 and Ca_2N .

Fig. S2 (a) Phonopy dispersions of MoS_2/Ca_2N heterostructure and (b) the fluctuations of energy and

the final configuration of MoS_2/Ca_2N heterostructure.

Fig. S3 The -COHP between S atom at the interface of MoS₂/Ca₂N heterojunction and the three closest Ca atoms is depicted in red.

Fig. S4 The band structure of the MoS_2/Ca_2N heterostructure. The red line indicates electron layer

related bands at the interface of $MoS_2\!/Ca_2N$ heterostructure.

Fig. S5 (a) The formation energy and (b) binding energy of TM atoms in the catalyst.

Fig. S6 (a) The *d*-band center and (b) charge transfer of TM atoms in the catalyst.

Fig. S7 Free energy paths of the OER for TM single atom on MoS2, and MoS₂/Ca₂N at U = 0 V

atom	ΔG_1	ΔG_2	ΔG_3	ΔG_4	Overpotential (eV)
Sc	-1.97411	0.288541	2.96982	2.96982	2.405749
Ti	-1.72438	0.146704	3.104847	3.392827	2.162827
V	-1.07642	-0.11327	3.504334	2.605357	2.274334
Cr	0.55552	-0.80949	3.820295	1.353673	2.590295
Mn	0.236223	-0.05476	2.57955	2.158989	1.34955
Fe	-0.33326	0.952117	2.328538	1.9726	1.098538
Co	-0.0042	0.906031	2.257347	1.760826	1.027347
Ni	0.886685	1.250345	1.77447	1.008499	0.54447
Cu	-0.00196	2.085197	1.27826	1.5585	0.855197
Zn	0.840583	1.974634	1.578548	0.526235	0.744634

Table. S1 The energy consumptions of each reaction step and overpotential in MoS_2 .

atom	ΔG_1	ΔG_2	ΔG_3	ΔG_4	Overpotential (eV)
Sc	-1.92824	0.429205	2.907719	3.511313	2.281313
Ti	-1.60638	0.244335	3.305766	2.976279	2.075766
V	-1.92773	0.156897	3.094221	3.596617	2.366617
Cr	-0.55611	0.560572	3.162978	1.752561	1.932978
Mn	-0.64414	0.400183	2.935482	2.228476	1.705482
Fe	-0.06092	0.642051	2.50625	1.832622	1.27625
Co	0.197897	1.119751	2.024946	1.577407	0.794946
Ni	0.483313	1.628964	1.572776	1.234946	0.398964
Cu	0.287181	2.22428	1.134103	1.274435	0.99428
Zn	0.495682	1.898775	1.615231	0.910312	0.668775

Table. S2 The energy consumptions of each reaction step and overpotential in MoS_2/Ca_2N .