Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary Information:

Advancing Anode-Less Lithium Metal Batteries: ZnF₂ Modification and In-Situ Structural Regulation for Enhanced Performance

Jing Tao,^a Can Zhang,^a Xueyang Li,^a Xinlong Chen,^a Chenzhen Ji^b, Wang Wan^{*a}, and Chao Wang^{*a}

Figure. S1 (a-c) The tape-break and sticky properties of Li foil.

Figure S2. (a, b) Digital photographs of the as-prepared 50 μ m-thick LiF@LiZn10/Li foil. (c-e) Digital photographs of the as-prepared 25 μ m-thick LiF@LiZn10/Li foil. (f-h) Digital photographs of the as-prepared 20 μ m-thick LiF@LiZn10/Li foil.

Figure S3. Digital photograph of the LiF@LiZn10/Li foil with 5 μ m-thickness.

Figure S4. SEM images of the LiF@LiZn10/Li foil with 50 $\mu m.$

Figure S5. Digital photographs of the 30 μ m-thick LiF@LiZn10/Li foil during the flexibility test and the 10 μ m-thick LiF@LiZn10/Li foil during the bending-stretching test.

Figure S6. (a) SEM images on the cross-section of the LiF@LiZn10/Li foil. EDS illustrate the distribution of (b) the Zn element and (c) the F element on the cross-section of the LiF@LiZn10/Li foil.

Figure S7. The surface change of (a) bare Li electrode exposed in a controlled environment with a relative humidity (RH) of 10%. (b) bare Li electrode exposed in a controlled environment with a relative humidity (RH) of 20%. (c) the LiF@LiZn10/Li foil electrodes exposed in a controlled environment with a relative humidity (RH) of 10%. (d) the LiF@LiZn10/Li foil electrode exposed in a controlled environment with a relative humidity (RH) of 10%.

Figure S8. Delithiation curve of (a) bare Li electrode and (b) the LiF@LiZn10/Li electrode.

Figure S9. (a) The theoretical specific capacity of different types of lithium foil.

Figure S10. Cyclic performance of bare Li and the LiF@LiZn10/Li symmetric cells at a current density of 8 mA cm⁻² with an areal capacity of (a) 8 mA h cm⁻² and (b) 16 mA h cm⁻².

Figure S11. Cyclic performance of (a, b) the bare Li and the LiF@LiZn10/Li symmetric cells at 1 mA cm⁻² and 1 mA h cm⁻² in a carbonate ester electrolyte. (c, d) the bare Li and the LiF@LiZn10/Li symmetric cells at 2 mA cm⁻² and 1 mA h cm⁻² in a carbonate ester electrolyte.

Figure S12. Nyquist plots of (a) the bare Li electrode and the LiF@LiZn10/Li foil electrode in symmetric cells. (b) the LiF@LiZn10/Li symmetric cells at 1 mA cm⁻² and 1 mA h cm⁻² after different cycles.

Figure S13. Operando optical microscopy images of (a) bare Li symmetric cells and (b) the LiF@LiZn10/Li symmetric cells.

Figure S14. Atomic concentrations of O and F at the bare Li, SEI-A, and SEI-B according to XPS analysis.

Figure S15. (a) XPS survey spectra of the LiF@LiZn10/Li symmetric cells after 3, 10, and 30 cycles. (b) High-resolution XPS spectra of F 1s on the LiF@LiZn10/Li surface after 3, 10, and 30 cycles.

Figure S16. Cycling performance of LFP||LiF@LiZn10/Li full cells with 20 μm thicknesses of the LiF@LiZn10/Li electrode.

Figure S17. The Coulombic efficiency of the LiFePO₄||bare Li and LiFePO₄||LiF@LiZn10/Li full cells during rate capability.

Figure S18. Schematic illustration of the NCM811||LiF@LiZn10/Li pouch cell with 0.13 Ah.

Figure S19. The Coulombic efficiency of the pouch battery during cycling.

Figure S20. (a, b) SEM images of the surface of the LiF@LiZn10/Li foil composite electrode in pouch battery after 80 cycles.

Figure S21. The LSV curve of the Li||SS (Stainless Steel) cell.

Table S1.	Calculation of	the theoretica	I specific capacity	of the LiF@LiZn10/Li
		composite	e electrode	

Mass ratio (ZnF ₂)	Mass ratio (Li)	Ar (ZnF ₂) / g mol ⁻¹	Ar (Li) / g mol ⁻¹	Specific capacity
				(Active Li) / g mol ⁻¹
0	1			3860
5%	95%			3641.14
10%	90%	103.38	6.94	3422.28
15%	85%			3203.42
33%	67%			2415.20

Table S2. Parameters of the NCM811||LiF@LiZn10/Li pouch cell.

Parameters	Numerical value
Capacity	0.1302 Ah
Cathode	0.8692 g
Anode	0.1462 g
Electrolyte	0.4140 g
Mass	1.4294 g