Photocured Ti₃C₂T_x MXene/ SiOC ceramic composites for electromagnetic interference shielding in terahertz band

Calculating of EMI shielding performance

The time-domain spectra obtained from the terahertz time-domain spectroscopy system (THz-TDS) were transformed to frequency-domain spectra by fast Fourier transform (FFT). The transmissivity (T), absorptivity (A), and reflectivity (R) were then calculated according to the following formula based on the frequency-domain spectra:¹⁻⁵

$$R = \left[\frac{E_{Rs}(\omega)}{E_{Rr}(\omega)}\right]^2 \tag{S1}$$

$$T = \left[\frac{E_{Ts}(\omega)}{E_{Tr}(\omega)}\right]^2 \tag{S2}$$

$$A = 1 - T - R \tag{S3}$$

where $E_{Ts}(\omega)$ and $E_{Tr}(\omega)$ is the amplitude of the sample and reference in the frequency domain spectra of transmission mode, and $E_{Rs}(\omega)$ and $E_{Rr}(\omega)$ is the amplitude of the sample and reference in the frequency domain spectra of reflection mode, respectively.

The total EMI SE (SE_T), EMI wave reflection (SE_R), and EMI wave absorption were calculated according to the following formula:

$$SE_T = 10 \times \log\left(\frac{1}{T}\right) = SE_A + SE_R$$
 (S4)

$$SE_A = -10 \times \log(\frac{1}{1-R}) \tag{S5}$$

$$SE_R = -10 \times \log^{[n]}(1-R) \tag{S6}$$

The reflection loss (RL) was calculated by the following equation:

$$RL = -20 \times \log \left[\frac{E_{Rs}(\omega)}{E_{Rr}(\omega)} \right]^2$$
(S7)

The real part (ε') and imaginary parts (ε'') of dielectric constant were calculated by:

$$\varepsilon' = n^2(\omega) - k^2(\omega) \tag{S8}$$

$$\varepsilon'' = 2 \times n(\omega) - k(\omega) \tag{S9}$$

where $n(\omega)$ and $k(\omega)$ refers to the refraction index and extinction coefficient of the sample, and they were calculated by the following formula:

$$n(\omega) = \frac{\phi(\omega)c}{\omega d} + 1 \tag{S10}$$

$$k(\omega) = \ln\left\{\frac{4n(\omega)}{T(\omega)[n(\omega)+1]^2}\right\}\frac{c}{\omega d}$$
(S11)

$$T(\omega) = \frac{E_s(\omega)}{E_r(\omega)}$$
(S12)

Where $\phi(\omega)$ refers to the phase difference of the sample and reference signal, ω refers to the angular frequency, *d* refers to the thickness of the sample, and *c* refers to the spread velocity of THz waves.

Fig. S1 (a, b) SEM images of Ti₃AlC₂.

Fig. S2 (a, b) SEM images of the photocured Ti₃C₂T_x MXene/resin-0.3 composite.

Fig. S3 Time-domain spectra of $Ti_3C_2T_x$ MXene/SiOC-0.3 composite in (a) transmission and (b) reflection mode.

Fig. S4 Frequency-domain spectra of $Ti_3C_2T_x$ MXene/SiOC-0.3 composite in (a) transmission and (b) reflection mode.

Material	Frequency	Content of	Average	Ref.
	/GHz	MXene/wt.%	SE_T/dB	
Ti ₃ C ₂ T _x /AgNWs	8.2-12.4	91	21	6
$Ti_3C_2T_x$ /AgNWs-PVB	8.2-12.4	91	30	6
$Ti_3C_2T_X$ /cellulose nanofiber	8.2-12.4	50-90	23-25	7
Ti ₃ C ₂ T _X /wax matrix	2-18	45-85	3-33	8
$Ti_3C_2T_x$ /polyimide	8.2-12.4	0-30	2.6-34.7	9
ZrO/1-(3-aminopropyl) imidazole grafted	8.2-12.4	0-15	6.9-27.2	10
carboxylated nitrile rubber/ $Ti_3C_2T_X$				
Ti ₃ C ₂ T _x MXene/PDMS foam	8.2-12.4	1-4	6-22.8	11
MXene/SWCNT	8.2-12.4	-	0.5-4	12
Ti ₃ C ₂ T _X /SiOC (This work)	200-1600	0.3	25	

Table S1 Comparison of EMI properties of the reported MXene composites to this work

Fig. S5 The reflection loss (RL) of SiOC and $Ti_3C_2T_x$ MXene/SiOC ceramic composite

Fig. S6 (a) The real part (ϵ') and (b) imaginary parts (ϵ'') of dielectric constant of SiOC and Ti₃C₂T_x MXene/SiOC ceramic composite.

Fig. S7 The loss tangent value of the dielectric constant (tan δ) of SiOC and Ti₃C₂T_x MXene/SiOC ceramic composite.

References

- C. Zhou, K. Zhang, X. Sun, X. Zhao, K. Zheng, J. Mi, F. Qing, Q. Wen and X. Li, Small Methods, 2023, 7, 2201493.
- 2. G. Li, S. Ma, Z. Li, Y. Zhang, Y. Cao and Y. Huang, Adv. Funct. Mater., 2023, 33, 2210578.

- Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang and Q. Shi, *Adv. Funct. Mater.*, 2018, 28, 1704363.
- Y. S. Cao, Z. Cheng, R. F. Wang, X. Y. Liu, T. R. Zhang, F. Fan and Y. Huang, *Carbon*, 2022, 199, 333-346.
- 5. Y. Bai, F. Qin and Y. Lu, *Adv. Optical Mater.*, 2022, **10**, 2101868.
- 6. X. Han, H. Feng, W. Tian, K. Zhang, L. Zhang, J. Wang and S. Jiang, *Polymers*, 2024, 16, 760.
- W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M.G. Ma and F. Chen, ACS Nano, 2018, 12, 4583-4593.
- 8. T. T. Liu, Y. H. Zhu, J. C. Shu, M. Zhang and M. S. Cao, *Mater. Today Phys*, 2023, **31**, 100988.
- N. Chu, C. Luo, X. Chen, L. Li, C. Liang, M. Chao and L. Yan, J. Alloys Compd., 2023, 955, 170241.
- P. Das, A. Katheria, A. Jana, M. Das, B. Roy, J. Nayak, K. Nath, S. K. Ghosh, A. De and N. C.
 Das, ACS Appl. Energy Mater., 2023, 1, 1186-1200.
- 11. H. Sima, B. Liu, C. Cheng and C. Zhang, J. Appl. Polym. Sci., 2024, 141, e55161.
- G. M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi and A. D. Taylor, *Adv. Funct. Mater.*, 2018, 28, 1803360.