Supporting Information

Regulating the Interlayer Spacing of $Ca_{0.55}ZrH_{0.9}(PO_4)_2$ for Selective Removal of Sr^{2+} from Acidic Wastewater

Ruixi Liu, ab Qian Zhao, ab Zeru Wang, ab Rui Jiang, ab Chuancong Lin, ab LinZhen Wu, ab

Guangyuan Chen,^{ab} Pan He, ^{ab} Lin Zhu,^{*ab} Jing Chen,^{*c} Tao Duan^{*ab}

^a National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest

University of Science and Technology, Mianyang 621010, China.

^b State Key Laboratory of Environment-friendly Energy Materials, Key Laboratory of Solid Waste

Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and

Technology, Mianyang 621010, China.

^c Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

* Corresponding Author :

(Lin Zhu) Email: zhulin@swust.edu.cn

(Jing Chen) Email: jingxia@mail.tsinghua.edu.cn

(Tao Duan) Email: duant@ustc.edu.cn

1. Isothermal adsorption experiments and kinetic experiments. In the batch adsorption experiment, the solid-liquid ratio was 1:2 (adsorbent 5mg, 10ml solution). The pH value of the solution was adjusted by a certain amount of HNO₃ and NaOH, which did not affect the concentration of the solution. The pH of the solution was also monitored by a pH meter.

In summary, 5 mg of the adsorbent was added to a 10 mL solution containing Sr and stirred for 12 hours on a constant-temperature magnetic stirrer. The solution was then separated and filtered using a 0.22 μ m nylon membrane filter. The concentration of Sr²⁺ in the supernatant was analyzed using ICP-MS. By measuring the difference in Sr²⁺ concentration in the solution before and after adsorption, the equilibrium adsorption capacity was calculated using the following formula:

$$q_e = \frac{(C_0 - C_e) \times V}{M} \tag{S1}$$

where $C_0 (mg \cdot L^{-1})$ is the initial concentration of metal ions, Ce $(mg \cdot L^{-1})$ is the equilibrium concentration, V (L) is the volume of the test solution and M (g) is sorbent dose.

The removal rate of material can be calculated by the following formula:

Removal rate(%) =
$$\frac{(C_0 - C_e)}{C_0} \ge 100\%$$
 (S2)

where C_0 and C_e represent the initial and equilibrium concentrations of Sr^{2+} or Cs^+ , respectively.

2. Competing Ion Experiment Procedure. 5 mg of the material was added to a preprepared solution and stirred for 12 hours on a constant-temperature magnetic stirrer. The solution was then separated and filtered using a 0.22 µm nylon membrane filter. The concentrations of Sr^{2+} , Cs^+ , La^{3+} , and other metal ions in the clear solution were analyzed using ICP-MS.

The Sr^{2+} , Cs^+ , and La^{3+} systems were prepared in ratios of 1:1:1, 1:5:5, and 1:10:10, respectively. The corresponding ion concentrations in these systems were 10 ppm:10 ppm:10 ppm, 10 ppm:50 ppm:50 ppm, and 10 ppm:100 ppm:100 ppm. The competition system concentration ratio of Sr^{2+} to other metal ions was 10 ppm:100 ppm.

3.Distribution coefficient (Kd). The distribution coefficient Kd value can be calculated by the following formula:

$$K_d = \frac{V}{m} \times \frac{(C_0 - C_e)}{C_e}$$
(S3)

where $C_0 (mg/L)$ and $C_e (mg/L)$ are the initial and equilibrium concentrations of the target ion, respectively; m (g) and V (mL) are the mass of the ion exchange material and the volume of the solution used in the ion exchange experiment respectively.

4.The adsorption data fitting by isotherm models. The Langmuir isotherm model and the Freundlich isotherm model can be expressed by the eq 3 and eq 4.

$$\ln q_e = \ln K_F + n \ln C_e \tag{S4}$$

$$\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{q_m K_L} \tag{S5}$$

For both equations, $q_e \ (mg/g)$ and $q_m \ (mg/g)$ are the adsorption capacity at equilibrium and saturation adsorption capacity, respectively; Ce (mg/L) is the Sr²⁺ concentration in the solution at equilibrium; K_L and K_F are the Langmuir and Freundlich constant, respectively. **5.The adsorption data fitting by kinetic models.** The pseudo-first-order and pseudo-second-order models can be expressed by the eq 5 and eq 6.

$$q_{t} = q_{e} - e^{\ln q_{e} - tk_{1}}$$
(S6)
$$q_{t} = \frac{t}{\frac{1}{k_{2}q_{e}^{2}} + \frac{t}{q_{e}}}$$
(S7)

For both equations, where $q_t (mg/g)$ is the amount of uranium adsorbed at time t (h), $q_e (mg/g)$ is the amount of uranium adsorbed at equilibrium, $k_1(min^{-1})$ represents the rate constant of pseudo-first-order kinetic model, and $k_2 (g mg^{-1} min^{-1})$ represents the rate constant of pseudo-second-order kinetic model.

6. Bragg's law formula.

$$d = \frac{\lambda}{2Sin\frac{2\theta}{2}}$$
(S8)

Here, λ is the X-ray wavelength during XRD analysis, and 2 θ (°) is the position of the Bragg diffraction peak in the XRD pattern.

7. Theoretical calculation methods. The theoretical calculations in this study were performed using the VASP (Vienna Ab initio Simulation Package) software, and the overall research is based on Density Functional Theory (DFT), employing the planewave pseudopotential method. The Generalized Gradient Approximation (GGA) with the Projector Augmented Wave (PAW) method was used to describe the interaction between ions and electrons, and the Perdew-Burke-Ernzerhof (PBE) functional was used to describe the electron exchange-correlation interaction. The plane-wave cutoff energy was uniformly set to 520 eV. The Brillouin zone k-point mesh was generated using the Monkhorst-Pack method, with a k-point grid set to $4 \times 6 \times 3$. During the calculations, the convergence criteria for the total energy were set to $1 \times 10^{(-5)}$ eV, and the convergence criteria for the single atomic forces were set to -0.02 eV/Å. The adsorption energy is typically calculated using the following formula:

$$E_{ads} = E_{total} - E_{Zrp} - E_{Ca^2 +}$$
(S9)

$$E_{ads} = E_{total} - E_{Zrp} - E_{Sr^2} +$$
(S10)

Fig. S1 (a)~(d) show the SEM images of ZrP, intercalated ZrP and Ca-ZrP respectively.

Fig. S2 (a) Comparison of the Zr 3d characteristic peaks of original ZrP and Ca-ZrP; (b) Comparison of the P 2p characteristic peaks of original ZrP and Ca-ZrP;

Fig. S3 (a) and (b) show the Sr^{2+} adsorption capacity of commercial ZrP and hydrothermal ZrP respectively; (c) shows the capacity of ZrP to capture Sr^{2+} after intercalation; (d)) and (e) are the kinetic spectra of Sr^{2+} adsorption by commercial ZrP and hydrothermal ZrP respectively. (f) shows the comparison of the Ca²⁺ precipitation amount of Ca-ZrP in Sr(NO₃)₂ and pure water respectively;

Fig. S4 (a) P pseudo-first-order kinetic model fitting diagram of the kinetic data of Sr^{2+} captured by Ca-ZrP in neutral solution; (b) P pseudo-first-order kinetic model fitting of kinetic data of Sr^{2+} captured by Ca-ZrP in neutral solution Second-order kinetic model fitting chart;

Fig. S5 (a) and (b) show the capacity and Kd values for trapping Sr^{2+} as a function of pH for hydrothermally prepared ZrP and ZrP after intercalation, respectively.; (c) shows the amount of Ca²⁺ precipitated when Ca-ZrP traps Sr^{2+} with pH change; and (d) shows the pH change of Ca-ZrP, C-ZrP, and ZrP before and after the experiment. (e) shows the XRD pattern of Ca-ZrP before and after irradiation.

Fig. S6. (a), (b), and (c) respectively show the Ca²⁺ precipitation capacity of Ca-ZrP in neutral, 0.5 mol/LHNO₃, and 1 mol/LHNO₃ solutions under different initial competing ion ratios. The pictures (d), (e), and (f) respectively show the removal of each ion by Ca-ZrP in neutral, 0.5mol/LHNO₃, and 1mol/LHNO₃ solutions at the initial ratio of Sr/other metals of 1:10. rates and correlation coefficients.

Fig S7: High-resolution XPS region of P 2p.

Samulas	Langm	uir constant	Freundlich constant						
Samples	q _m (mg/g)	K _L (L/mg)	R ²	Freundlich constant n K _F (mg/g) 2.94 9.96 P (90%) and ZrP Pseudo-second	$K_F(mg/g)$	\mathbb{R}^2			
Ca-ZrP	226.9	0.01	0.99	2.94	9.96	0.92			
Table S2. Kinetic parameters of Sr ²⁺ capture by CA@ZrP (90%) and ZrP									
Table S2.	Kinetic parameters of	of Sr ²⁺ capture by	CA@ZrP (90	0%) and ZrP					
Table S2.	Kinetic parameters of Pseudo-first-or	of Sr ²⁺ capture by der	CA@ZrP (90	0%) and ZrP	Pseudo-second-or	·der			
Table S2. I Samples	Kinetic parameters c Pseudo-first-or q _e (mg/g)	of Sr ²⁺ capture by der K ₁ (min ⁻¹)	CA@ZrP (90 R ²	0%) and ZrP q _e (mg/g)	Pseudo-second-or K ₂ (g/mg min ⁻¹)	rder R ²			

Table S1. Parameters for Isotherm Models of Sr²⁺ adsorption on Ca-ZrP.

Table S3. The adsorption performance of C-ZrP \sim ZrP and Ca-ZrP with other similar adsorbents for Sr²⁺ was compared.

Adsorbents	pН	Equilibrium time (min)	Adsorption capacity (mg/g)	References
TMP-MS		60	68	[1]
Porous	11	14	45.36	[2]
Hydroxyapatite				
Zr-Mn oxide/PAN	8	222	21.37	[3]
Na_2TinO_{2n+1}/SiO_2	8	5	33.31	[4]
Sodium trititanate	6	> 500	85.26	[5]
PAN-zeolite	7	90	98.13	[6]
Natural zeolite	8		1.3	[7]
CHA-type zeolite	7		9.7	[8]
Pecan shell-based AC	7		8.8	[9]
Commercial AC	4		4.4	[10]
K-NGH-1	7		41.62	[11]
FJSMSnS-2	7		59.41	[12]
FJSM-SnS-4	7		147	[13]
C-ZrP	7	240	112.2	This Work
ZrP	7	240	138.9	This Work
Ca-ZrP	7	240	226.9	This Work

Table S4. Adsorption of Sr²⁺ by different materials in low pH environment.

	рН	Adsorption capacity (mg/g)	References	
Hex-WO ₃	2	21	[14]	
TiO ₂ -PAN	2	9	[15]	
ZnO	4	20	[16]	
CaO NPs@MOF-5	2	1.2	[17]	
Activated carbon	2	3.7	[10]	
C-ZrP	1	5.1	This Work	
ZrP	1	9.9	This Work	
Ca-ZrP	1	34.5	This Work	

$\frac{\Pi}{C \text{ Sr}}$	C C		C Sr			D Sr	U Sr La	D Cs	1. V (s	DIa	V La
∪ ₀ ⊶ mø/L	U₀ ^{C3} mø/L	∪₀ [⊥] " mσ/L	∪ _e ⊶ mg/L	Ue ^{C3} mg/L	∪ _e Ľª mø/L	К ^{от} %	κ _d » mL/σ	К°3 %	ı⊾d∽, m∏∖α	К ^{1.4} %	ı⊾ _d ⊥" mL/σ
Neutra	<u>s</u> ,		mg/L	<u>6</u> / L	<u>6</u> /12	/ 0	L/ S	70		70	
0.800	10.12	0.860	1 792	6.082	5 724	87	A 56×103	30	0.3×10^{3}	12	0.72×10^{3}
7.077	10.12	2.007	1./02	0.962	5.124	02	4.30^10	50	0.3^10	42	0.72^10
0.5mol	/L HNO ₃	i									
10.08	10.07	9.817	4.032	8.679	7.559	60	1.01×10 ³	13	0.16×10 ³	23	0.30×10 ³
1mol/L	HNO ₃										
10.05	10.85	9.917	5.628	10.09	8.778	44	0.79×10 ³	7	0.08×10 ³	13	0.15×10 ³
Т	able S6.	Paramete	rs for ca	pturing eac	h ion of (Ca-ZrI	P at room ten	nperati	are in neutra	al, 0.51	mol/L
Н	NO ₃ , 1m	ol/L HNC	O_3 enviro	nments with	n an initia	ıl ratio	of Sr/Cs/La	of 1:5:	5.		
C ₀ ^{Sr}	C ₀ ^{Cs}	C_0^{La}	C _e ^{Sr}	$C_e^{C_s}$	C _e ^{La}	R ^{Sr}	$\mathbf{K}_{\mathbf{d}}^{\mathbf{Sr}}$	R ^{Cs}	K _d ^{Cs}	R ^{La}	$\mathbf{K}_{\mathbf{d}}^{\mathbf{La}}$
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	%	mL/g	%	mL/g	%	mL/g
Neutra	l										
10.49	50.89	49.72	2.37	39.19	30.83	78	3.45×10 ³	23	0.30×10 ³	38	0.61×10 ³
0.5mol	/L HNO ₃										
9.98	49.86	50.82	5.79	44.87	40.15	42	0.72×10 ³	10	0.11×10 ³	21	0.27×10 ³
1mol/L	HNO ₃										
9.65	50.85	49.13	6.66	48.30	43.73	31	0.45×10 ³	5	0.05×10 ³	11	0.12×10 ³
Т н	able S7.	Paramete	rs for ca	pturing each	h ion of (Ca-ZrI	P at room tem	nperatu	are in neutra	al, 0.51	mol/L
CaSr	Cn ^{Cs}	CnLa	C _a Sr	C ^{Cs}	C _a La	R ^{Sr}	K ^{Sr}	R ^{Cs}	K ₄ Cs	RLa	KaLa
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	%	mL/g	%	mL/g	%	mL/g
Neutra	al										
9.83	100.39	100.71	2.75	82.32	74.52	72	2.57×10 ³	18	0.22×10 ³	26	0.35×10 ³
0.5mo	I/L HNO	3									
9.88	99.86	100.82	6.13	90.87	86.7	38	0.61×10 ³	9	0.09×10 ³	14	0.16×10 ³
1mol/l	L HNO ₃										
9.85	100.15	99.33	7.19	97.15	90.39	27	0.37×10 ³	3	0.03×10 ³	9	0.10×10 ³

Table S5. Parameters for capturing each ion of Ca-ZrP at room temperature in neutral, 0.5mol/L HNO₃, 1mol/L HNO₃ environments with an initial ratio of Sr/Cs/La of 1:1:1.

HNO ₃ , 1mol/L HNO ₃ environment, with an initial ratio of Sr/other metals of 1:10.																	
C ₀ ^{Sr}	C ₀ ^{Na}	C_0^{Mg}	C ₀ ^{Ba}	C ₀ ^K	C ₀ ^{Ca}	R ^{Sr}	K_d^{Sr}	R ^{Na}	K _d ^{Na}	R ^{Mg}	$\mathbf{K}_{\mathbf{d}}^{\mathbf{M}\mathbf{g}}$	R ^{Ba}	K _d ^{Ba}	Rĸ	K _d ^K	R ^{Ca}	K _d ^{Ca}
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	%	mL/g	%	mL/g	%	mL/g	%	mL/g	%	mL/g	%	mL/g
Neutra	ıl																
9.82	98.32	99.53	100.2	100.1	98.32	65	1.86×	30	0.43×	40	0.67×	38	0.61×	28	0.39×	-25	
							103		103		103		10 ³		103		
0.5mol	/L HNO ₃																
9.92	97.38	100.5	97.21	99.76	99.14	37	0.59×	17	0.21×	30	0.43×	24	0.32×	15	0.18×	-35	
							103		103		103		103		103		
1mol/I	HNO ₃																
9.92	99.18	98.32	97.91	100.2	98.62	25	0.33×	8	$0.08 \times$	19	0.23×	16	0.19×	8	0.09×	-30	
							103		103		103		10 ³		103		
		Table	S9. Rem	oval rate	es of Sr ²⁺	+ by di	fferent n	nateria	ls in cor	npeting	; ionic ei	nviron	ments.				
			Compe	etitive io	n enviro	onmen	nt		Re	moval	rate (%)	K _d (ml/	g)		Refere	ences
	Na ₂ TinC	O _{2n+1} /SiO	2	Mg	、 K、 N	a, Ca	i, Cs						>1x1	04		[4]	
NH ₄ V ₄ O ₁₀ Na, K, Al, Ca, Gu											>3x1	0^{2}		[18]			
mult	multi-walled-carbon nanotube Na、K、Mg、Ca、Cs										2.919		[19]				
	P-M	IWCNT		Nav	K, Mg	g、Ca	、 C						4.14	0		[19]	
	Ca	-ZrP		Na	K、Mg	g、Ca	、 Ba			65			1.86x1	03	Т	his Wo	ork

Table S8. Parameters for capturing each ion of Ca-ZrP at room temperature in a neutral, 0.5mol/L

Table S10. The ratio of each element in Ca-ZrP before adsorption.

Peak Table:	Name	Start BE	Peak BE	End BE	Area(P)CPS.e V	Area(N)TPP-2M	Atomic%
	C1s	297.98	284.6	279.18	81796.71	1146.84	16.72
	Ca2p	359.98	347.64	340.18	231097.37	565.61	8.25
	O1s	544.98	531.33	525.18	658907.79	3820.73	55.71
	P2p	143.98	133.4	124.18	96282.85	910.49	13.28
	Zr3d	193.98	183.08	174.18	284227	414.46	6.04

Table S11. Ratio of each element in Ca-ZrP after adsorption of Sr²⁺.

Peak Table:	Name	Start BE Peak BE		End BE	Area(P)CPS.e V	Area(N)TPP-2M	Atomic%
	C1s	297.98	284.62	279.18	59117.01	828.87	10.96
	Ca2p	359.98	347.73	340.18	196036.22	479.82	6.35
	O1s	544.98	531.48	525.18	772618.21	4480.62	59.27
	P2p	143.98	133.65	124.18	114372.92	1081.71	14.31

Sr3d	141.98	133.61	126.18	113210.23	201.85	2.67
Zr3d	193.98	183.24	174.18	333550.08	486.43	6.43

References

- 1 A. R. Khanchi, *Appl. Surf. Sci.*, 2012.
- 2 X. Xia, J. Shen, F. Cao, C. Wang, M. Tang, Q. Zhang and S. Wei, *Journal of Hazardous Materials*, 2019, **368**, 326-335.
- 3 S. İnan and Y. Altaş, *Chem. Eng. J.*, 2011, **168**, 1263-1271.
- 4 C. Liu, L. Chen, Z. Ye, C. Li, X. Yin, X. Wang and Y. Wei, *Journal of Sol-Gel Science and Technology*, 2019, **91**, 273-285.
- 5 W. Guan, J. Pan, H. Ou, X. Wang, X. Zou, W. Hu, C. Li and X. Wu, *Chem. Eng. J.*, 2011, **167**, 215-222.
- 6 H. Faghihian, M. Iravani, M. Moayed and M. Ghannadi-Maragheh, *Chem. Eng.* J., 2013, **222**, 41-48.
- 7 T. Abdollahi, J. Towfighi and H. Rezaei-Vahidian, *Environ. Technol. Innovation*, 2020, **17**, 100592.
- 8 J. Liang, J. Li, X. Li, K. Liu, L. Wu and G. Shan, *Sep. Purif. Technol.*, 2020, **230**, 115874.
- 9 A. R. Kaveeshwar, P. S. Kumar, E. D. Revellame, D. D. Gang, M. E. Zappi and R. Subramaniam, J. Cleaner Prod., 2018, 193, 1-13.
- 10 S. Chegrouche, A. Mellah and M. Barkat, *Desalination*, 2009, **235**, 306-318.
- 11 H. Sun, B. Hu, T. Lv, Y. Guo, Y. X. Yao, L. Yang, M. Feng and X. Huang, *Small*, 2023, e2208212.
- 12 W.-A. Li, J.-R. Li, B. Zhang, H.-Y. Sun, J.-C. Jin, X.-Y. Huang and M.-L. Feng, *ACS Appl. Mater. Interfaces*, 2021, **13**, 10191-10201.
- 13 J. Li, J. Jin, T. Zhang, W. Ma, X. Zeng, H. Sun, M. Cheng, M. Feng and X. Huang, *ACS ES&T Water*, 2021.
- 14 X. Li, W. Mu, X. Xie, B. Liu, H. Tang, G. Zhou, H. Wei, Y. Jian and S. Luo, *J. Hazard. Mater.*, 2014, **264**, 386-394.
- 15 S. Kasap, H. Tel and S. Piskin, J. Radioanal. Nucl. Chem., 2011, 289, 537-544.
- 16 Ü. H. Kaynar and S. Ç. Kaynar, *Celal Bayar University Journal of Science*, 2017, **13**, 185-191.
- 17 S. Yekta and M. Sadeghi, *J. Inorg. Organomet. Polym. Mater.*, 2018, **28**, 1049-1064.
- 18 H. Zhang, C. Li, X. Chen, H. Fu, Y. Chen, S. Ning, T. Fujita, Y. Wei and X. Wang, J. Colloid. Interface. Sci., 2022, 615, 110-123.
- 19 S. Ali, I. A. Shah and H. Huang, Sep. Purif. Technol., 2020, 237, 116352.