# **Supplementary Information**

#### The efficiency calculation

The incident photon to current efficiency (IPCE) was determined using monochromatic light irradiation with CEL-QPCE3000. IPCE was measured at 1.23  $V_{RHE}$  in 1M KOH solution (pH=14) using the same three-electrode setup described in Experimental Section for photocurrent measurements. IPCE was calculated as follow:<sup>S1</sup>

$$IPCE(\%) = \frac{1240 \times I(\frac{mA}{cm^2})}{Plight(\frac{mW}{cm^2}) \times \lambda(nm)} \times 100(\%)$$
(1)

where I am the measured photocurrent density at specific wavelength,  $\lambda$  is the wavelength of incident light, and Plight is the measured light power density at that wavelength.

The absorbed photon-to-current efficiency (APCE) was acquired based on the following formula:<sup>S2</sup>

$$APCE = \frac{IPCE}{1 - 10^{-A(\lambda)}} \tag{2}$$

where  $A(\lambda)$  is the absorbance at wavelength  $\lambda$ .

 $H_2O_2$  was added to the KOH solution as a hole-scavenger to speed up the kinetics of the reaction at the electrode/solution interface. Photocurrent density obtained in  $H_2O_2$ -containing KOH was used to calculate charge injection efficiency ( $\eta_{sur}$ ) and charge separation efficiency ( $\eta_{bulk}$ ) using the formulas as following:<sup>S3, S4</sup>

$$\eta_{sur} = \left(\frac{J_{H_20}}{J_{H_20_2}}\right) \times 100\%$$
(3)

$$\eta_{bulk} = \left(\frac{J_{H_2O_2}}{J_{abs}}\right) \times 100\% \tag{4}$$

$$J_{abs} = \frac{q}{hc} \int_{300}^{1240} \lambda * \phi(\lambda) * A(\lambda) * d\lambda$$
(5)

in which  $J_{H20}$  and  $J_{H202}$  are the photocurrent densities measured in 1 M KOH without and with the addition of H<sub>2</sub>O<sub>2</sub>, J<sub>abs</sub> is the integrated current density (mA cm<sup>-2</sup>), q is elementary charge (1.6 x 10<sup>-19</sup> C), h is planck's constant, c is the speed of light in vacuum,  $\lambda$  is the wavelength of photon,  $\Phi(\lambda)$  is the AM 1.5G light spectrum and A( $\lambda$ ) is absorbance of photoelectrode.

The applied bias photon-to-current efficiency (ABPE) was calculated from the J-V

curves by assuming 100% Faradaic efficiency using the following equation,<sup>S2</sup>

$$ABPE = \frac{J * (1.23 - V_{bias})}{P_{in}} \times 100\%$$
(6)

where J is the photocurrent density (mA cm<sup>-2</sup>),  $V_{bias}$  is the applied bias potential ( $V_{RHE}$ ), and  $P_{in}$  is the incident light power density (AM 1.5G, 100 mW cm<sup>-2</sup>).

#### Transient photocurrent decay time

Transient photocurrent can be used to study the recombination behavior of charge on semiconductor electrodes, which can be compared by comparing the normalized D value of a single-period photocurrent to obtain the curve of ln D for time of different materials and find the transient time constant  $\tau$  ( $\tau$  takes the time value when ln D = -1). The larger transient time constant  $\tau$  reflects a slower charge recombination process. The transient time constant  $\tau$  is calculated as follows.<sup>S5</sup>

$$lnD = \frac{-\tau}{t} \tag{7}$$

$$D = \frac{I_t - I_{st}}{I_{in} - I_{st}} \tag{8}$$

## Mott-Schottky (MS) analysis in solution

The Mott-Schottky experiment was carried out at 500, 1000, and 1500 Hz, with an amplitude of 0.01 V and a potential range of -1.2 to 1.0 V (vs. SCE). The carrier density ( $N_D$ ) and flat band potential ( $E_f$ ) of photoanode can be obtained by fitting the straight-lined segment of M-S curve. The Mott-Schottky equation is shown as following:<sup>S7</sup>

$$\frac{1}{C^2} = \frac{2}{e\varepsilon\varepsilon_0 N_D} \left[ \left( E - E_{fb} \right) - \frac{KT}{e} \right]$$

$$N_D = \frac{2}{e\varepsilon\varepsilon_0} \left[ \frac{d\left(\frac{1}{C^2}\right)}{dV} \right]^{-1}$$
(10)

where, C is the capacitance in space charge region, q is the charge of an electron  $(1.6 \times 10^{-19} \text{ C})$ , N<sub>D</sub> is the donor concentration in the semiconductor,  $\varepsilon_0$  is permittivity of vacuum,  $\varepsilon$  is the relative permittivity (9.66 for SiC),<sup>S8</sup> E is the applied potential, E<sub>f</sub> is the flat band potential, K is the Boltzmann's constant, and T is the temperature (K).

# **Electrochemical Active Surface area**

Cyclic voltammetry (CV) curves were measured in the potential range of 1.05 to -1.15  $V_{RHE}$  at scan rates from 0.01 to 0.1 V s<sup>-1</sup> with an increment of 0.01 V. To obtain the electrochemical active surface area (ECSA), the double-layer capacitance (C<sub>dl</sub>) was calculated from the CV curves according to the following equation:<sup>S8</sup>

$$C_{dl} = \frac{I}{v} \tag{11}$$

$$ECSA = \frac{C_{dl}}{C_s} \tag{12}$$

where *I* is the current density (mA cm<sup>-2</sup>) measured at 1.10  $V_{RHE}$  and *v* is the scan rate (V s<sup>-1</sup>). C<sub>s</sub> is the specific capacitance of the corresponding surface-smoothed sample under the same conditions.



Fig. S1 EDX mapping (a-d) and spectrum (e) of the CC.



Fig. S2 FEDX mapping (a-e) and spectrum (f) of the SiC@CC.



Fig. S3 EDX mapping (a-f) and spectrum (g) of the N,V<sub>c</sub>-SiC@CC.



Fig. S4 Low-magnification TEM image of SiC nanowires



Fig. S5 Selected area electronic diffraction pattern of  $N_{\rm 2}$  plasma-treated SiC nanowire



Fig. S6 XRD patterns of the CC, SiC@CC, and N,Vc-SiC@CC





Fig. S8 BET adsorption-desorption curves of the CC, SiC@CC and N,V<sub>c</sub>-SiC@CC. The BET specific surface areas were 11.18, 26.63, and 79.81 m<sup>-2</sup> g<sup>-1</sup> for the CC, SiC@CC and N,V<sub>c</sub>-SiC@CC, respectively.



**Fig. S9** Electrochemical surface areas of the (a) CC, (b) SiC@CC, and (c) N,V<sub>c</sub>-SiC@CC. (d-f) Relative electrochemical surface areas for the linear relationship between the capacitive current and scan rate.



Fig. S10 (a) XPS survey spectra of the Ar-SiC@CC, NH<sub>3</sub>-SiC@CC, and N,V<sub>c</sub>-SiC@CC. (b) XPS N 1s spectrum of the NH<sub>3</sub>-SiC@CC.



Fig. S11 EPR spectra of the NH<sub>3</sub>-SiC@CC, SiC@CC and N,V<sub>c</sub>-SiC@CC.



Fig. S12 (a) J-V curves of the Ar-SiC@CC, NH<sub>3</sub>-SiC@CC, and N,V<sub>c</sub>-SiC@CC in 1M KOH solutions. (b) Transient photocurrent responses of the Ar-SiC@CC, NH<sub>3</sub>-SiC@CC, and N,V<sub>c</sub>-SiC@CC under AM1.5 100 mA cm<sup>-2</sup> illumination.



Fig. S13 XPS survey spectra of the N,V<sub>c</sub>-SiC@CC, N,V<sub>c</sub>-SiC@CC (4 sccm), and N,V<sub>c</sub>-SiC@CC (8sccm).



Fig. S14 (a) J-V curves of the N,V<sub>c</sub>-SiC@CC, N,V<sub>c</sub>-SiC@CC (4 sccm), and N,V<sub>c</sub>-SiC@CC (8 sccm) in 1M KOH solution. (b) Transient photocurrent responses of the N,V<sub>c</sub>-SiC@CC, N,V<sub>c</sub>-SiC@CC (4 sccm), and N,V<sub>c</sub>-SiC@CC (8 sccm) under AM1.5 100 mA cm<sup>-2</sup> illumination.



Fig. S15 EPR spectrum detected from the photoanode of N,V<sub>c</sub>-SiC@CC under AM 1.5G (100 mW cm<sup>-2</sup>) illumination in H<sub>2</sub>O containing DMPO as spin-trapping agent.



Fig. S16 Gas productions of N,V<sub>c</sub>-SiC@CC.



Fig. S17 Transient photocurrent response of N,V<sub>c</sub>-SiC@CC after 33 h cycling under AM1.5 100 mA cm<sup>-2</sup> illumination.



Fig. S18 J-V curves of the SiC@CC (a) and N,V<sub>c</sub>-SiC@CC (b) photoanodes measured in 1 M KOH with or without 0.2 M  $H_2O_2$  as a hole scavenger.



Fig. S19 APCE curve of the N,V<sub>c</sub>-SiC@CC



Fig. S20 TR-PL spectra of the SiC@CC and N,V\_c-SiC@CC and their corresponding fittings



**Fig. S21** Nyquist plots of the (a) CC, (b) SiC@CC, (c) N,V<sub>c</sub>-SiC@CC photocathodes with different applied potentials in 1M KOH aqueous solution



**Fig. S22** Charge transfer resistance ( $R_{ct}$ ) vs. potential curves of the SiC-based photocathodes. (a) The data were extracted from EIS experiments of the SiC@CC, and N,V<sub>c</sub>-SiC@CC photocathodes.  $R_{ct}$  was followed by the order of SiC@CC> N,V<sub>c</sub>-SiC@CC. Bode plots from electrochemical impedance spectroscopy (EIS) measurement. (b) Phase angles and (c) resistances plots vs. frequency of the SiC@CC and N,V<sub>c</sub>-SiC@CC photocathodes at 1.0 V<sub>RHE</sub> in 1M KOH (pH=14.0).



Fig. S23 (a) UV-vis diffuse reflection spectra of the CC, SiC, and  $N,V_c$ -SiC; (b) Tauc plot of high-quality CC, SiC, and  $N,V_c$ -SiC.

| Catalyst                          | C Atomic<br>(%) | O Atomic<br>(%) | Si Atomic<br>(%) | N Atomic<br>(%) |
|-----------------------------------|-----------------|-----------------|------------------|-----------------|
| CC                                | 96.99           | 3.11            | /                | /               |
| SiC@CC                            | 52.89           | 20.53           | 26.58            | /               |
| N,V <sub>c</sub> -SiC@CC          | 30.47           | 39.29           | 24.43            | 5.82            |
| N,V <sub>c</sub> -SiC@CC (4 sccm) | 32.64           | 33.41           | 25.11            | 8.84            |

Table S1 Contents of Si, C, O and N calculated from the XPS survey analysis.

| N,V <sub>c</sub> -SiC@CC (8 sccm) | 35.88 | 29.00 | 21.59 | 13.53 |
|-----------------------------------|-------|-------|-------|-------|
|-----------------------------------|-------|-------|-------|-------|

**Table S2** A comparison of the photocurrent densities of SiC-based photoanodes for PECwater splitting reported recently.

| Photoanode                                             | J@1.23 V <sub>RHE</sub>                                  | PEC experimental conditions                                               | Ref.             |  |
|--------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|------------------|--|
| 3C-SiC                                                 | ~0.11 mA cm <sup>-2</sup>                                | 400 mW cm <sup>-2</sup> Xe light;0.1 M<br>Na <sub>2</sub> SO <sub>4</sub> | S9               |  |
| 3C-SiC<br>([N]=1.0×10 <sup>16</sup> cm <sup>-3</sup> ) | 0.20 mA cm <sup>-2</sup> at 1.0<br>V vs. Ag/AgCl         |                                                                           |                  |  |
| 3C-SiC<br>([N]=3.6×10 <sup>18</sup> cm <sup>-3</sup> ) | 0.13 mA cm <sup>-2</sup> at 1.0<br>V vs. Ag/AgCl         | 994 mW cm <sup>-2</sup> Solar-light<br>lamp;0.1 M HCl                     | S10              |  |
| 3C-SiC/Pt                                              | 2.03 mA cm <sup>-2</sup> at 1.0<br>V vs. Ag/AgCl         |                                                                           |                  |  |
| 3C-SiC                                                 | 0.70 mA cm <sup>-2</sup> at 1.0<br>V vs. Ag/AgCl         | 100 mW cm <sup>-2</sup> Xe lamp;0.1 M<br>KHCO <sub>3</sub>                | <b>S</b> 11      |  |
| 3C-SiC(111)                                            | 0.12 mA cm <sup>-2</sup>                                 | 100 mW cm <sup>-2</sup> AM1.5G;1.0M<br>NaOH                               | S12              |  |
| 3C-SiC(111)/NiO                                        | 1.18 mA cm <sup>-2</sup>                                 | 100 mW cm <sup>-2</sup> AM1.5G;1.0M<br>NaOH                               | S13              |  |
| 3C-<br>SiC(111)/FeOOH                                  | 0.73 mA cm <sup>-2</sup>                                 | $100 \text{ mW} \text{ cm}^{-2} \text{ AM1 5C} \cdot 1.0 \text{ M}$       | 4 <sub>S14</sub> |  |
| 3C-<br>SiC(111)/Ni:FeOO<br>H                           | 1.15 mA cm <sup>-2</sup>                                 | NaOH                                                                      |                  |  |
| 3C-<br>SiC(111)/monolaye<br>r-graphene                 | 0.67 mA cm <sup>-2</sup>                                 | 100 mW cm <sup>-2</sup> AM1.5G;1.0M                                       | 015              |  |
| 3C-<br>SiC(111)/monolaye<br>r-graphene/FeOOH           | 1.14 mA cm <sup>-2</sup>                                 | KHCO <sub>3</sub>                                                         | 815              |  |
| Nanoporous<br>p3C(001)5M/NiFe                          | 1.50 mA cm <sup>-2</sup>                                 | 100 mW cm <sup>-2</sup> AM1.5G;1.0M                                       | S16              |  |
| Nanoporous<br>p3C(111)5M/NiFe                          | 2.31 mA cm <sup>-2</sup>                                 | NaOH                                                                      |                  |  |
| N-4H-SiC NHAs                                          | 4.39 mA cm <sup>-2</sup> at 1.4<br>V <i>vs</i> . Ag/AgCl | vicible light: 0.5 No. 50                                                 | <b>C</b> 17      |  |
| N-4H-SiC sheet                                         | 1.58 mA cm <sup>-2</sup> at 1.4<br>V vs. Ag/AgCl         | visible light; $0.5 \operatorname{Na}_2 \mathrm{SO}_4$                    | 51/              |  |
|                                                        | 0.36 mA cm <sup>-2</sup>                                 | visible light; 0.1 M Na <sub>2</sub> SO <sub>4</sub>                      |                  |  |
| SiCN                                                   | 0.05 mA cm <sup>-2</sup>                                 | visible light; 0.1 M KOH                                                  | S18              |  |
|                                                        | 0.12 mA cm <sup>-2</sup>                                 | visible light; 0.1 M NaOH                                                 |                  |  |
| N,V <sub>c</sub> -SiC@CC                               | 2.50 mA cm <sup>-2</sup>                                 | 100 mW cm <sup>-2</sup> AM1.5G;1.0M<br>KOH                                | This<br>work     |  |

Time-resolved photoluminescence (TR-PL) curve of photoanode and fitting results of its twoexponential model. According to the literature,<sup>S9</sup> it can be interpreted that  $\tau_1$  and  $\tau_2$  represent the rapid decay life and slow decay life of photocatalysts, respectively, which are related to radiation recombination from CB to VB, radiation recombination through surface state, and shallow capture of electron-hole recombination, respectively.

The fitting equation is presented as follows:<sup>S10</sup>

$$I(t) = A_1 \cdot e^{(-t/\tau 1)} + A_2 \cdot e^{(-t/\tau 2)}$$
(13)  
$$\tau_{ave} = \frac{(A_1 \tau_1^2 + A_2 \tau_2^2)}{A_1 \tau_1 + A_2 \tau_2}$$
(14)

Table S3 The fitted parameters obtained from the decay curves of TR-PL.

| Catalyst                     | $\mathbf{A}_{1}$ | $\tau_1$ (ns) | $A_2$   | $\tau_2$ (ns) | τ <sub>ave</sub> (ns) |
|------------------------------|------------------|---------------|---------|---------------|-----------------------|
| SiC@CC                       | 124692.8964      | 1.5938        | 18.6435 | 2.8567        | 2.70                  |
| N,V <sub>c</sub> -<br>SiC@CC | 38435.7447       | 1.9275        | 21.0965 | 23.0464       | 2.07                  |

| Catalyst                 | R <sub>s</sub> (ohm cm <sup>-2</sup> ) | R <sub>ct</sub> (ohm cm <sup>-2</sup> ) | CPE <sub>sc</sub> -T (F cm <sup>-2</sup> ) | CPE <sub>sc</sub> -P (F cm <sup>-2</sup> ) |
|--------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------------|
| SiC@CC                   | 2.84                                   | 4128                                    | 0.0011                                     | 0.93736                                    |
| N,V <sub>c</sub> -SiC@CC | 3.56                                   | 738.1                                   | 0.0026                                     | 0.94287                                    |

Table S4 Summarized parameters of EIS for the SiC based photoanodes at  $1.23V_{RHE}$ .

 $\label{eq:table_stable_stable_stable} \textbf{Table S5} \ DFT\mbox{-calculated bond length} \ (\text{\AA}) \ of \ SiC@CC, \ V_c\mbox{-SiC}@CC \ and \ N\mbox{-SiC}@CC.$ 

| Materials              | Bond           | Length (Å) |
|------------------------|----------------|------------|
|                        | C-Si           | 1.776      |
| SiC@CC                 | C-Si           | 1.776      |
|                        | C-Si           | 1.844      |
|                        | C-Si(-vacancy) | 1.769      |
| V <sub>c</sub> -SiC@CC | C-Si(-vacancy) | 1.769      |
|                        | C-Si(-vacancy) | 1.824      |
|                        | N-Si           | 1.751      |
| N-SiC@CC               | N-Si           | 1.751      |
|                        | N-Si           | 1.822      |

| Materials              | Atom         | Charge (e) |
|------------------------|--------------|------------|
|                        | Si(-C)       | 1.24       |
| SiC@CC                 | Si(-C)       | 1.37       |
|                        | Si(-C)       | 1.37       |
|                        | Si(-vacancy) | 0.81       |
| V <sub>c</sub> -SiC@CC | Si(-vacancy) | 0.77       |
|                        | Si(-vacancy) | 0.77       |
|                        | Si(-N)       | 1.34       |
| N-SiC@CC               | Si(-N)       | 1.39       |
|                        | Si(-N)       | 1.39       |

**Table S6** DFT-calculated atom Mulliken charges of SiC@CC,  $V_c$ -SiC@CC and N-SiC@CC.Parentheses indicate connection to the atom or to the C vacancy.

## Reference

- S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C.
   Payne, Zeitschrift fur Kristallographie-Crystalline Materials, 2005, 220, 567-570.
- S2 T.W. Kim, K.S. Choi, Science, 2014, 343, 990-994.
- S3 T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, C. Li, J. Am. Chem. Soc., 2016, 138, 13664-13672.
- S4 H.C. Fu, P. Varadhan, C.H. Lin, J.H. He, Nat. Commun., 2020, 11, 3930.
- S5 Z. Yan, W. Wang, L. Du, J. Zhu, D.L. Phillips, J. Xu, Appl. Catal. B: Environ., 2020, 275, 119151.
- S6 F. Cardon, W.P. Gomes, J. of Phys. D, 1978, 11, L63-L67.
- S7 D. Zhao, H. Zhao, W. Zhou, Physica E Low Dimens. Syst. Nanostruct., 2001, 9, 679-685.
- S8 X.Y. Yang, Z.W. Chen, X.Z. Yue, X. Du, X.H. Hou, L.Y. Zhang, D.L. Chen, S.S. Yi, Small, 2023, 19, 2205246.
- S9 I. Lauermann, R. Memming, D. Meissner, J. Electrochem. Soc., 1997, 144, 73-80.
- S10 J.T. Song, H. Mashiko, M. Kamiya, Y. Nakamine, A. Ohtomo, T. Iwasaki, M. Hatano, Appl. Phys. Lett. 2013, 103, 213901.
- S11 J.T. Song, T. Iwasaki, M. Hatano, Jpn. J. Appl. Phys., 2014, 53, 05FZ04.

- S12 J.W. Sun, V. Jokubavicius, L. Gao, I. Booker, M. Jansson, X.Y. Liu, J.P.MHofmann,
  E.J.M. Hensen, M.K. Linnarsson, P.J. Wellmann, I. Ramiro, A. Martí, R. Yakimova,
  M. Syväjärvi, Mater. Sci. Forum, 2016, 858, 1028-1031.
- S13 J.X. Jian, Y.C. Shi, S. Ekeroth, J. Keraudy, M. Syvajarvi, R. Yakimova, U. Helmersson, J.W. Sun, J. Mater. Chem. A, 2019, 7, 4721-4728.
- S14 J.X. Jian, Y.C. Shi, M. Syväjärvi, R. Yakimova, J.W. Sun, Solar RRL, 2019, 4, 1900364.
- S15 H. Li, Y.C. Shi, H. Shang, W.M. Wang, J. Lu, A.A. Zakharov, L. Hultman, R.I.G. Uhrberg, M. Syväjärvi, R. Yakimova, L.Z. Zhang, J.W. Sun, ACS Nano, 2020, 14, 4905-4915.
- S16 J.X. Jian, V. Jokubavicius, M. Syväjärvi, R. Yakimova, J. Sun, ACS Nano, 2021, 15, 5502-5512.
- S17 S. Liu, T. Yang, E. Wang, H. Wang, Z. Du, S. Cao, Q. Zhang, K.C. Chou, X. Hou, J. Clean. Prod., 2023, 396, 136484.
- S18 I.N. Reddy, A. Sreedhar, C.V. Reddy, J. Shim, M. Cho, K. Yoo, D. Kim, J.S. Gwag, Appl. Catal. B: Environ., 2018, 237,876-887.