Supporting Information

Biotopologically structured composite materials

for low temperature energy storage

Yu Wang, Xin Chen, Bo Cui, Cuiping Guo, Yao Li, Qinglei Liu, Hui Pan,* Di Zhang*

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

* Corresponding author. E-mail: panhui115@sjtu.edu.cn; zhangdi@sjtu.edu.cn

Table S1. Characterization of SC, SAC, and SAC/NiCo-LDH.

	SC	SAC	SAC/NiCo-LDH
BET surface area (m ² g ⁻¹)	71.0	2787.5	292.5
Total pore volume (cm ³ g ⁻¹)	0.161	1.490	0.218
Average pore diameter (nm)	3.939	2.563	1.410

Table S2. Elements contents from XPS data for SAC.

Sample ID	С	Ν	0	S	Р
	Atomic %				
SAC	60.85	1.24	36.80	0.49	0.63

Table S3. Comparison of the specific capacitance of SAC/NiCo-LDH and previous works.

	• •	•	1		
Composites	Biomass carbon materials	Specific capacitance	Electrolyte	Ref.	
SAC/NiCo-LDH	I aminania ianonioa	1095 E or l at 1 A or l	(M KOU	This	
	Laminaria japonica	1965 F g · at 1 A g ·	0 M KOH	work	
MnO ₂ /FAFSC	Faidherbia albida fruit shell	426.66 F g ⁻¹ at 1 A g ⁻¹	3 М КОН	1	
BPC/Fe ₂ O ₃	Wheat straw	987.9 F g ⁻¹ at 1 A g ⁻¹	3 M KOH	2	
MnO ₂ /GPCN-SS	Salvia splendens	438 F g ⁻¹ at 0.5 A g ⁻¹	1 M Na ₂ SO ₄	3	
ZnCoS@AC	Biowaste litchi seed	320 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	4	
CeCoS _x -SA/GF	Sodium alginate	873.3 F g ⁻¹ at 1 A g ⁻¹	PVA/KOH hydrogel	5	
			electrolyte		
CoNiSi/C	Bamboo leaves	226 F g ⁻¹ at 0.5 A g ⁻¹	3 М КОН	6	

Table S4. Comparison of the energy density of SAC/NiCo-LDH//SAC and previous works.

	-		=	
Materials	Tune	Energy Density	Operating temperature	Def
(anode//cathode)	турс	(Wh kg ⁻¹)	Operating temperature	Kei.
SAC/NiCo-LDH//SAC	ASC	43.7	-30	This work
AC//AC	SC	27.8	-20	7
NiO/C//C	ASC	11.8	-18	8
AC//HC	SIC	42	-30	9
AC//Zn	ZIHC	27.8	-40	10

Fig. S1 XPS spectra of SAC. The high resolution XPS spectra of (a) C1s, (b) N1s, (c) O1s, (d) P2p and (e) S2p for SAC.

Fig. S2 (a) XPS spectrum survey scan for commercial porous carbon YP-50F. (b) Nyquist plots of YP-50F and SAC.

Fig. S3 Raman spectra of SC and SAC.

Fig. S4 XRD spectra of seaweed and SAC.

Fig. S5 EDS mapping by SEM for SAC/NiCo-LDH.

Fig. S6 EDS mapping by TEM for SAC/NiCo-LDH.

Fig. S7 XPS spectra of SAC/NiCo-LDH. The high resolution XPS spectra of (a) C1s, (b) Co2p, (c) Ni2p, (d) N1s and (e) O1s for the sample SAC/NiCo-LDH.

Fig. S8 (a) A flexible supercapacitor pouch cell (approximately 18 cm in height as indicated by the ruler) is assembled by using SAC/NiCo-LDH and SAC as positive and negative, respectively. (b) Supercapacitor pouch cell powering two light bulbs.

Fig. S9 Specific capacitance of SAC/NiCo-LDH//SAC at -30 °C.

Fig. S10 Electrochemical properties of SAC/NiCo-LDH//SAC at different temperatures. (a) GCD curves of SAC/NiCo-LDH//SAC with 1 A g⁻¹. (b) Specific capacitance of SAC/NiCo-LDH//SAC at different temperatures.

References

- 1. A. A. Mohammed, C. Chen and Z. Zhu, Journal of Power Sources, 2019, 417, 1-13.
- 2. K. Fang, J. Chen, X. Zhou, C. Mei, Q. Tian, J. Xu and C.-P. Wong, *Electrochimica Acta*, 2018, 261, 198-205.
- 3. B. Liu, Y. Liu, H. Chen, M. Yang and H. Li, ACS Sustainable Chemistry & Engineering, 2019, 7, 3101-3110.
- 4. G. Dhakal, D. R. Kumar, S. Sahoo and J.-J. Shim, *Carbon*, 2023, **208**, 277-289.
- 5. H. Guo, A. Zhang, H. Fu, H. Zong, F. Jin, K. Zhao and J. Liu, *Chemical Engineering Journal*, 2023, 453, 139633.
- 6. Y. Zhang, C. Wang, H. Jiang, Q. Wang, J. Zheng and C. Meng, *Chemical Engineering Journal*, 2019, 375, 121938.

7. J. Xu, N. Yuan, J. M. Razal, Y. Zheng, X. Zhou, J. Ding, K. Cho, S. Ge, R. Zhang, Y. Gogotsi and R. H. Baughman, Energy Storage Materials, 2019, **22**, 323-329.

- 8. L. Su, L. Gong, X. Wang and H. Pan, International Journal of Energy Research, 2016, 40, 763-769.
- 9. J. Yang, J. Ruan, Q. Li, F. Fang, Y. Song, D. Sun and F. Wang, Advanced Functional Materials, 2022, 32, 2200566.
- 10. Q. Fu, S. Hao, L. Meng, F. Xu and J. Yang, ACS Nano, 2021, 15, 18469-18482.