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Materials and methods

S1. Materials

The precursor materials such as Nickel Nitrate hexahydrate (Ni(NO3)2·6H2O), Cobalt 

nitrate hexahydrate(Co(NO₃)₂·6H₂O), HMTA, and Potassium hydroxide were procured from 

Daejung Chemicals & metals co.Ltd., S. Korea. The materials were used for application 

without any post-treatment in analytical grade without any prior treatment.

S2. Instrumentation

The crystal structure and phases of the NiCo LDH electrode were analyzed using an 

Empyrean X-ray diffractometer (XRD) (Malvern Pan analytical, UK). The source of the XRD 

was Cu-Kα under a current of 40mA and a voltage of 40kV. The Laser Raman for the NiCo 

LDH was carried out using LabRAm HR Evolution Raman Spectroscopy (Horiba Jobin-Yvon, 

France) with Ar+ ion laser functioning at 10mW power with the excitation wavelength of 

514nm. The morphology of the NiCo LDH was analyzed using a Field emission scanning 

electron microscope (TESCAN, MIRA3) coupled with an energy-dispersive X-ray 

spectroscopy (EDS) analyzer for the quantitative analysis of the samples. The electrochemical 

performance of the active electrode or ASC device was analyzed using an AUTOLAB 

PGSTAT302N electrochemical workstation. The Brunauer-Emmett-Teller (BET) surface area 

of composites analyzed based on the des-adsorption isotherms of inert nitrogen was performed 

using BELSORP MINI X, Microtrac MRB Chem BET analyzer. All samples were degassed 

under vacuum conditions at 250 ºC for 4 h. The apparent surface area was computed from the 

nitrogen adsorption data in the relative pressure range between 0.05 and 0.3.

S3. Synthesis of NiCo LDH

NiCo LDH were directly grown over Ni-foam via the one-step hydrothermal process. 

At first, the precursor solution was prepared by homogeneous mixing of Ni (NO3)2· 6H2O and 

Co (NO₃)₂· 6H₂O with C6H12N4 in the ratio of 2:1:3 in 40 ml DI water to allow for constant 

stirring until the formation of a light pink colour solution. Prior to the hydrothermal deposition, 

We have followed the standard protocol for the mass calculation after the hydrothermal growth 

of the Ni-Co LDH over the nickel foam. Step 1: The NF substrate is cleaned thoroughly with 

dilute HCl and ethanol to remove the oxide layer and the volatile substances respectively and 

kept for drying at 80˚ C for 4 h. After drying the weight of the NF was measured and noted as 

W1. Step 2: Then the cleaned NF was kept for the hydrothermal reaction for the designated 



period and cleaned thoroughly with absolute ethanol and DI water to remove the excess 

deposits and kept for drying for 6 hours to remove all the moisture contents. After drying the 

weight of the hydrothermally treated NF with grown NiCo LDH for 3 different time intervals 

[6h,8h,10h] is measured and the weight is recorded as W2. The difference between W2 and 

W1 is obtained as the effective mass of the grown NiCo LDH over the NF. After that, as grown 

Ni-foam was taken out and rinsed several times with ethanol and DI water. At last, Nico LDH@ 

Ni electrode was dried in a hot air oven (70°C) for overnight and used for further study. The 

NiCo LDH samples obtained at various reaction time intervals (from 6 to 10 h) were named as 

NiCo LDH-6, NiCo LDH-8, and NiCo LDH-10, respectively.

S4. Preparation of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets

The graphene oxide (GO) sheets were prepared using the modified Hummers' method, 

whereas the reduced graphene oxide (rGO) sheets were prepared via a thermal reduction 

method, as reported in the literature1,2.

S4. Electrochemical analysis of active electrodes via three-electrode configuration

The electrochemical characterizations of as properad electrodes were carried out in 

three-electrode (3E) configuration method by employing NiCo LDH or graphene as the 

working electrode, platinum sheet as the counter electrode, and Ag/AgCl as the reference 

electrode with 3M KOH solution as the electrolyte at room temperature. Here, the active mass 

loading of the electrode was measured using the Dual range Semi-micro-Balance (AUW-220D, 

Shimadzu) from the difference between mass before and after hydrothermal treatment/ slurry 

coating. The performance evaluation of electrode or ASC device were analysed through the 

best practice methods such as cyclic voltammetry (CV), galvanostatic charge-discharge (CD) 

and electrochemical impedance spectroscopy (EIS), respectively. 

S4. Electrochemical studies of NiCo LDH//Graphene ASC device via two-electrode 

configuration

The asymmetric supercapacitor was fabricated by sandwiching positrode (NiCo LDH) 

and negatrode (rGO) having cross-sections (1*1) cm2 separated by a whatmann paper as a 

separator and tied together with Teflon tape. The as-prepared device was dipped in a cylindrical 

beaker in a 3M KOH electrolyte solution. The charge balancing of both (positrode and 

negatrode) electrodes was done by using following equation as suggested in the previous 

literature 34.



m+ / m-  = [C- × ΔV-] / [C+ × ΔV+]….……………… (1)

where m- and m+ represent the mass of the negative and positive electrodes, C- and C+ 

denote the specific capacitance of the negative and positive electrodes, and, ΔV- and ΔV+ are 

the potential window of the negatrode and positrode obtained using the three-electrode system, 

respectively. The active mass of the positive and negative electrodes are 0.95 mg and 2.33 mg. 

The mass of the device is 3.28 mg. The specific capacitance (Csp), specific capacity (Q), energy 

density (E), and power density (P) of the fabricated asymmetric supercapacitor were calculated 

using the following equations 5–7.

Csp =  I dV / V * M* S------------------------------------(1)

Csp = I × t / V × M -------------------------------------(2)

Q = [I × ΔT] / [m*3.6]  -----------------------------------(3)

E = (Csp × ΔV2)/2---------------------------------------------(4)

P = E / Δt -------------------------------------------------------(5)

Here “Csp” and “Q” are the specific capacitance (Fg-1) and capacity (mAh g-1); “I” is 

the current “t” is the discharge current(s), “V” is the operating potential window (V); “M” 

is the mass of the electrode (g), “E” is the energy density and “P” is the power density 

respectively 8–12.



 

          Figure S1. Growth of NiCo LDH over Ni-foam after hydrothermal reaction (10 h).



Figure S2.X-ray diffraction pattern of NiCo LDH grown on Ni-foam



Figure S3. FE-SEM micrograph of bare Ni-foam 



Figure S4. The EDAX mapping depicted the homogeneous growth of Ni, CO, and O 

homogeneously distributed throughout the Ni-foam (A-E).



Figure S5 The EDAX mapping confirms the homogeneous distribution of 

Ni, CO, and O



Figure S6.BET surface area analysis (A) NiCo LDH-8 (B) NiCo LDH-6 



Figure S7.Survey spectrum of NiCo LDH-10



Figure S8. Electrochemical impedance spectroscopy (EIS) analysis of NiCo LDH-
10 (A) Nyquist plot (B) Bode phase angle 



           

Figure S9. Electrochemical characterization of NiCo LDH-8 (A) Cyclic voltammetry (CV) 
profiles of NiCo LDH-6 (B) Charge-discharge profile of NiCo LDH electrode measured at 
various current densities (C) Specific capacitance (D) Specific capacity of the NiCo LDH 
electrode at various current densities 



Figure S10. Electrochemical characterization of NiCo LDH-6 (A) Cyclic voltammetry 
(CV) profiles of NiCo LDH-6 (B) Charge-discharge profile of NiCo LDH electrode 
measured at various current densities(C) Specific capacitance (D) Specific capacity of 
the NiCo LDH electrode at various current densities



Figure S11. Reduced Graphene oxide (rGO) synthesis (A) Graphene oxide (GO) solution 

(B) GO powder (C) reduced GO.

Figure S9. X-ray diffractogram pattern spectra of GO and rGO.



Figure S12. XRD spectra of (A) GO (B) rGO



Figure S13. Electrochemical analysis of rGO @NF. (A) Cyclic voltammetry (CV) profiles 
of rGO@NF (B) Charge-discharge profile of rGO@NF electrode measured at various 
current densities (C) Specific capacitance from CV (D) Specific capacitance from CD.



Figure S14. (A) Bode phase angle (B) Specific capacitance of NiCo LDH ǁ rGO ASC device



Figure S15. (A-B) SEM micrograph of NiCo LDH electrode after stability study. (C-D) 
Elemental mapping of Ni, Co over the NF. (F) Map Sum spectrum of NiCo LDH electrode 
 



Figure S16. CV curve of NiCo LDH-10 with 0.4 M Urea 



Figure S17. CV curve of NiCo LDH-10 with 3M Urea 



Figure S18. Equivalent circuit diagram



Figure S19. CV curve of bare NF with1M KOH and  0.05M Urea 



Figure S20. FRA analysis of NF



    

Table S1. Comparison of specific capacitance of other binder-free NiCo LDH work

Materials Electrolyte Specific 
capacitance (F 
g-1)

Cycles Capacitance 
retention (%) 

Ref.

NiCoMn LDH/rGO 2M KOH 912 5000 63.3% 13

NiCoAl-LDH-CNT/RGO 6M KOH 1188 1000 88% 14,15

Ni-Co-Mn LDH 2M KOH 2012 1000 57.7% 15

Ni0.5Co0.5LDH/AC 1M KOH 947 5000 83.5% 16

CoSx/NiCo-LDH 2M KOH 1562 5000 76.62% 17

Co-Co LDH/graphene 2M KOH 1205 2000 60.3% 18

Ni-Co hydroxides /CNTs 2M KOH 1151 10000 77% 19

NiCo-LDH-120/CNTs 2M KOH 1505.4 2000 72.4% 20

NiCo LDH/rGO 3M KOH 1684.21 5000 83.33% This 
Work



       Table S2. Energy density vs Power density of various binder-free NiCo LDH works.

Material Energy density 
(Wh kg-1)

Power density 
(W kg-1)

Ref.

NiFe-LDH@CoS2@Ni//AC 15.84 375.1 21

Co-Fe LDH@NiO-Ni//AC 22 800 22

NiFe-LDH@MnO2//NiFe-LDH@FeOOH 22.68 750 23

NiCoFe-LDH//AC 8.7 62.8 24

NiCo2S4/CFP//AC 17.3 180 25

NiCo2S4/GA//AC 20.9 800 26

NiCo2S4 @ PANI-5 //AC 18.86 1285.9 27

GRH-NiCo2S4//AC 19 703 28

4M-P@NiCo LDH//AC 18.1 750 29

NiCo LDH//rGO 22.6 169.9 This 
Work
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