Supporting Information

Low-temperature suitability of flexible photo-rechargeable devices

integrated with hydrogel-based lithium-ion battery and perovskite solar cell

Wei Liu^{a,1}, Mingzhu He^{a,1}, Hai Lu^a, Hai Zhong^{a,*}, Ziwei Cai^a, Shaohang Wu^{a,*}, Yingxiang Tan^a, Xingjiang Liu^{b,*}, and Yaohua Mai^{a,c}

^a Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510006, China
^b National Key Laboratory of Chemical and Physical Power Sources, Tianjin Institute of Power Sources, Tianjin300384, P. R. China
^c Guangdong Mellow Energy Co., Ltd, Guangzhou 510630, China

¹ Wei Liu and Mingzhu He have contributed equally to this work.

*Corresponding author E-mail: haizhong@jnu.edu.cn (H. Zhong), shaohangwu@jnu.edu.cn (S. H. Wu), xjliu@nklps.orgs (X. J. Liu)

Fig. S1 XRD spectra of PCPL film, PAE:CMC:PAM (3:2:1) film, and LiNO₃ powders.

Fig. S2 FTIR of PCPL film, LiNO₃ powders, CMC powders, PAE film, and PAM powders.

Fig. S3 Stress-strain curve of PCPL film.

Fig. S4 EIS curve of PCPL film and the calculated ionic conductivity was obtained at -20 °C.

Fig. S5 The bending property of the hydrogel-based electrolyte at -20 °C.

Fig. S6 Photography of HE-LIB (a) top view is anode side; (b) top view is cathode side.

Fig. S7 Corresponding voltage-capacity profiles at selected cycles in Fig. 2d.

Fig. S8 (a) Corresponding voltage–capacity profiles at current densities ranging from 0.5C to 5C in Fig. 2e; (b) Corresponding energy density and ESE (as calculated by the weight of LiFePO₄) at various C-rates.

Fig. S9 Photography of *f*-PSC with area 0.12 cm^2 (a) flat state; (b) bend state.

Table S1 Comparison of η_{OEE} with a recently reported photo-rechargeable device.

	OEE	PCE	Energy storage device	Photovoltaic cells	Ref.
1	5.28%	16.6%	Zn-MnO ₂ micro-battery	Flexible perovskite solar cells	[1]
2	11.2%	25.0%	All-solid-state Li-S battery	Perovskite solar cells	[2]
3	12.04%	18.5%	Aluminum-ion battery	Perovskite solar cells	[3]
4	5.14%	15.9%	Non-aqueous Li-S battery	Perovskite solar cells	[4]
5	9.3%	16.8%	Aqueous Li/Na-ion battery	Perovskite solar cells	[5]
6	6.4%	14.85%	Rechargeable zinc battery	Perovskite solar cells	[6]
7	12.88%	21.48%	Quasi-solid-state Li-ion battery	Flexible perovskite solar cells	This work

Fig. S11 Effect of the photo-rechargeable device without an antireverse charging circuit.

Fig. S12 The corresponding galvanostatically discharge profile of the HE-LIB unit in photorechargeable device under light condition at 0, 6, 12, and 24 hours.

	PCE (%)	V _{OC} (%)	J _{SC} (mA cm ⁻²)	FF(%)
Without rest	20.75	1.15	22.35	80.92
With 5 h rest	20.48	1.15	22.27	80.15

Table S2 The corresponding photovoltaic parameters of encapsulated *f*-PSC in Fig. 4c.

Fig. S13 Corresponding voltage–capacity profiles at 5th (25 °C), 11th (–20 °C), and 55th (–20 °C) in Fig. 4f.

Fig. S14 Cyclic stability of flexible HE-LIB at initial state and bending state (with a curvature radius of ~ 1 mm).

Fig. S15 *J-V* curves and photovoltaic parameters of *f*-PSC under different bending states.

Fig. S16 Photography of photo-rechargeable device integrated by flexible HE-LIB unit and *f*-PSC unit.

Fig. S17 Photography of *f*-PSC with an area of 1.00 cm².

Fig. S18 *J-V* curves and photovoltaic parameters of *f*-PSC with an area of 1.00 cm^2 under (a) initial state and (b) after 10 bending cycles state (bend radius is 4 mm).

Reference:

[1] J. Bi, J. Zhang, P. Giannakou, T. Wickramanayake, X. Yao, M. Wang, X. Liu, M. Shkunov, W. Zhang, Y. Zhao, A highly integrated flexible photo-rechargeable system based on stable ultrahigh-rate quasi-solid-state zinc-ion micro-batteries and perovskite solar cells, Energy Storage Materials, 51 (2022) 239-248.

[2] T. Li, Y. Yang, B. Zhao, Y. Wu, X. Wu, P. Chen, X. Gao, Photo-rechargeable all-solid-state lithium-sulfur batteries based on perovskite indoor photovoltaic modules, Chemical Engineering Journal, 455 (2023) 140684.

[3] Y. Hu, Y. Bai, B. Luo, S. Wang, H. Hu, P. Chen, M. Lyu, J. Shapter, A. Rowan, L. Wang, A portable and efficient solar-rechargeable battery with ultrafast photo-charge/discharge rate, Advanced Energy Materials, 9 (2019) 1900872.

[4] P. Chen, G.R. Li, T.T. Li, X.P. Gao, Solar-driven rechargeable lithium-sulfur battery, Advanced Science, 6 (2019) 1900620.

[5] G. Weng, J. Kong, H. Wang, C. Karpovich, J. Lipton, F. Antonio, Z.S. Fishman, H. Wang,
W. Yuan, A.D. Taylor, A highly efficient perovskite photovoltaic-aqueous Li/Na-ion battery
system, Energy Storage Materials, 24 (2020) 557-564.

[6] P. Chen, T. Li, Y. Yang, G. Li, X. Gao, Coupling aqueous zinc batteries and perovskite solar cells for simultaneous energy harvest, conversion and storage, Nature Communications, 13 (2022) 64.