Tuning the surface charge and pore size in IPN arrested 'covalent organic nanostructures' through *in situ* exchangeable bonds for removal of persistent contaminants

Ria Sen Gupta^a, Sk. Safikul Islam^a, Amit Malakar^a, Tridip Das^b and Suryasarathi Bose^{a*}

^a Department of Materials Engineering, Indian Institute of Science, Bengaluru –560012, India
 ^bMaterials and Process Simulation Centre, California Institute of Technology, Pasadena,
 California – 91125, United States

* <u>sbose@iisc.ac.in</u>, Fax: +91-(0)80-2360 0472

SUPPORTING INFORMATION

EXPERIMENTAL SECTION

Materials and Methods

PVDF of Kynar 761 grade, having a molecular weight of 440,000 g/mol, was provided by Arkema. Sodium meta per-iodate (NaIO₄) at a purity of at least 99.8%, Dopamine hydrochloride monomer (DA) with a purity of 99%, and 11-Mercaptoundecanoic acid (purity >95%) were acquired from Sigma Aldrich. 2,4,6-triformylphloroglucinol (TP,>98.0%) and 3-3'-Dihydroxybenzidine (DHB, purity >99%) were provided by TCI chemicals. Buffer Tris(hydroxymethyl)aminomethane (Tris) with a purity of 99.8–100% was sourced from Sisco Research Laboratories Pvt Ltd. Sodium hydroxide pellets (NaOH) at a concentration of 97.0%, Hydrochloric acid (HCl) with a concentration of 35-38%, N, N-dimethylformamide (DMF, >99%)), N,N-Dimethylacetamide (DMAc, >99%), Acetone (>98%), Tetrahydrofuran (THF, >99.9%). Mesitylene (purity 98%), 1,4-Dioxane (purity 99.5%). N.N'-

Dicyclohexylcarbodiimide (DCC, purity >99%),4-Dimethylaminopyridine (DMAP, purity >98%) and Dichloromethane (DCM, purity >99%) were purchased from SD Fine Chemicals Ltd. All the dyes, namely Methyl Orange (MO) with a molecular weight of 327.33 Da, Rhodamine B (RB) with a molecular weight of 479.02 Da, Methylene Blue (MB, 319 Da), Methyl Red (MR, 269.30 Da), Congo Red (CR, 696.66 Da), Amido Black (AB, 616.49 Da), and Acrydine Orange (AO, 301.81 Da), were obtained from a local vendor. Tetracycline with a molecular weight of 444.43 Da, Amoxicillin with 365.40 Da molecular weight and Azithromycin with a molecular weight of 785 Da were obtained from a local medicine store.

Fabrication of Thiol-modified Covalent Organic Framework (SH-COF)

The preparation of this novel thiol-containing covalent organic framework (SH-COF) consists of two steps. In the first step, the hydroxyl-modified COF [OH-COF] was prepared and then the thiol group was introduced to make the thiol-modified COF [SH-COF] in the second step.

Step I:

In a beaker, TP (4.1 mmol) and DHB (5.9 mmol) were mixed followed by the addition of a prepared solution mixture containing mesitylene (0.03 mol) and 1,4-dioxane (0.4 mol). Next, acetic acid (3 mol) was added to the solution and allowed to stir for 15 minutes to mix properly. The orange-colored solution was then poured into a PTFE-lined stainless steel autoclave container (50 ml) and kept at 120 ° C for 72 hrs. The obtained deep orange residue was washed thoroughly with DMAc, acetone, and deionized water respectively, and kept in an oven (70 °C) for overnight drying. The resultant product was termed as OH-COF

Step II:

For the consequent thiol modification, 11-mercaptoundecanoic acid (0.71 mol), DCC (0.72 mol), DMAP (0.72 mol), and the prepared OH-COF were combined in a round-bottom flask, followed by the addition of 30-40 ml DCM. The resulting solution was bath sonicated for 10

minutes to achieve homogeneous dispersion. Subsequently, the solution was refluxed for 24 hours at 45 °C. The resulting brown-colored solution was washed with THF until a clear permeate was obtained. The resulting product was designated as SH-COF.

Synthesis of SH-COF tagged IPN membrane (SC-IPN)

To initiate the covalent tagging of the SH-COF moieties with the IPN membrane matrix, a 30 wt% dope solution was made using 2 gm of PVDF and 1 gm of dopamine monomer in DMF (7 ml), and the solution was mechanically agitated at 80 ° C to form a homogeneous solution. Next, SH-COF (6. wt%) was dispersed in DMF (3 ml) which upon complete dispersion was poured into the dope solution. The membranes were duly cast on a glass plate using a 300 μ m doctor blade that was adjusted to a casting speed of 7-8 cm/s. The glass plate with the films were immersed in a coagulating bath containing a cold (4-5 ° C) Tris buffer solution (10 mM, pH=8.5) (buffer was intended to maintain the pH of the bath in order to aid in the auto-oxidative polymerization of the dopamine) and NaIO₄ (5 mM) (oxidizing agent for enhancing the auto oxidative polymerization process). Low temperature helps in faster solvent-non-solvent exchange. For optimized pore size reduction, the membranes were submerged in the buffer solution for seven days.¹ The membranes were thoroughly cleansed and cleaned with ultrapure water prior to any additional tests or evaluations. The fabricated membranes were denoted as SC-IPN membranes.

Characterization of synthesized SH-COF and SC-IPN membranes

In the beginning, the structures of the synthesized OH-COF and SH-COF were determined using Density functional theory using VASP 5.4.4. The details of the computational setup are mentioned in the supplementary section. The fabricated particle and membranes' characterization began with mid-IR FTIR- spectroscopy from the Parkin Elmer frontier. XPS data acquired with an Axis Ultra using Al as the monochromatic source (1.486 keV) were used to support the FTIR results. For the synthesized SH-COF, ¹³C-solid state-NMR was performed on a Bruker AV 500S-500 MHz having traditional CP-MAS probe with a 10 kHz MAS frequency where 2 ms remained contact time for CP. Using Micromeritics ASAP 2020, BET adsorption-desorption isotherms for pore-size measurement were achieved. The membrane's surface roughness was measured using a Park NX10 AFM (5N/m cantilever force constant, non-contact mode, tip radius curvature of 8nm). The morphological images and elemental composition were studied using an EDX detector on a Karl Zeiss Ultra55 FE-SEM scanning electron microscope. Thermogravimetric analysis was carried out using TA Q500. PANalytical X'pert PRO was used to investigate X-ray diffraction through the crystalline OH-COF, SH-COF, IPN membrane, and SC-IPN membranes. The membranes' hydrophilicity was investigated by measuring the contact angle keeping water as solvent choice. The dye, antibiotic and microplastic rejection efficiencies were calculated using UV-Vis spectrophotometer from Perkin Elmer and that for the mercury samples ICP-OES from Agilent was employed. Mechanical integrity was analysed using Micro UTM and DMA. TA Q800 was used in tension mode and a force of 0.01 N was applied in the temperature range of 30-140 °C with a 10 °C/min heating rate. A load cell of 25N was used in micro UTM and a loading rate of 10mm/min was applied for conducting the tensile tests. Using the Surpass 3 instrument and Anton Paar's adjustable cell with a gap height of 100 m and pH 7, the surface charge of the membranes was investigated from their Zeta Potential. The Zetasizer nano series (Malvern Instruments) was used to assess the zeta potential of the synthesised SH-COFs. Zeta pals from Malvern instruments were utilized for particle size measurements.

Membrane porosity, uptake and pore size distribution and pore size calculation

The nature of the fabricated membrane is determined through bulk hydrophilicity which in turn plays a significant role in its absorption capacity of water. A facile technique was adopted to calculate this. Briefly, after taking out from the vacuum oven, approximately ten membrane coupons of comparable size and surface area (0.63 cm²) were weighed. After being completely submerged in distilled water, the identical membranes were weighed again. The uptake percentage was duly calculated utilizing Hebbar's formula²

% Uptake =
$$\frac{(W_w - W_d)}{W_w} \times 100$$
 equation (1)

Where W_w = weight of immersed membranes after 24 hr. W_d = weight of dry membranes respectively.

The Zhang et al. method was optimised for measuring membrane porosity.³ After being paddried using filter paper, the wet membrane's weight (Ww) was noted down. The membranes were then put in an air-circulating oven at 75 °C for 24 hours and dry weight (Wd) was calculated subsequently. The percentage of porosity (\mathcal{E} %) can be mathematically calculated using the following equation:

$$\varepsilon$$
 (%) = $\frac{W_w - W_d}{A \times l \times \rho} \times 100$ equation (2)

where, area of membrane = A, membrane thickness= 1 and density of distilled water = ρ (0.9975 g/cc at ambient temperature).

For pore size distribution, SEM micrographs were taken from sections of the membrane and around 100 pore diameters (measured 500 times) were analyzed using ImageJ software. Average pore diameters (d_p) were calculated by using the equation,

 $d_p = \left[\frac{\sum_{j=1}^{n} n_j d_j^2}{\sum_{j=1}^{n} n_j}\right]^{0.5}$ equation (3)

where, *n* is the number of values of pore diameters considered, d_j is the *j*th pore diameter value (nm), and n_j is the number of pores with the *j*th diameter value.

The mean pore radius of the membrane was calculated using the Gerout-Elford-Ferry equation,

$$r_m = \left[\frac{(2.9 - 1.75\varepsilon)8 \times Q \times l \times \rho}{\varepsilon \times A \times \Delta P}\right]^{0.5}$$
 equation

(4)

Where, r_m is the mean pore radius (m), ε is the porosity of the membrane, representing the fraction of the membrane volume that is occupied by voids or pores, Q being the flow rate (m³/s), 1 is the membrane thickness (m), ρ denotes the viscosity of water (Pa.s at 25°C), A is the effective membrane area (m²) and ΔP is the operational pressure (Pa) respectively.

Molecular performance: Rejection studies, pure water flux, antifouling and chlorine tolerance.

Pure water Flux stability and Antifouling studies

A significant need of filtration modules is water flux which is commonly attained from the membranes. For typical commercial membranes, the common trade-off between membrane permeability and selectivity frequently presents a gridlock. A filtration set up having an inhouse cross-flow mechanism has been utilized to evaluate the pure water flux. Before beginning the experiment, 45 mm-diameter token membrane coupons were carefully installed into the test cell and compressed at 10 psi (about 0.7 bar) for about 30 minutes. Next, the transmembrane pressure was discretely changed from 10 to 150 psi (0.7 to 10.34 bar) and the resultant flux (Jw) was then calculated using the following formula:

$$J_w = \frac{V}{A \times t} LMH$$
 equation (5)

All tests were run in triplicate to ensure repeatability. These membranes should have long-term stable and continuous performance. In order to verify the membranes' stability, a transmembrane pressure of 125 psi (8.6 bar) was maintained continuously for 21 days.

For gauging the antifouling properties of the SC-IPN membrane, 1000 ppm BSA (Bovine Serum Albumin) solution was used as the model protein model. After evaluating pure water flux (Jw) generated by the membranes, again flux values with BSA solution recorded at 100 psi for 1 hr. To thoroughly backflush the membrane, 0.9 wt.% of NaCl solution was used. Subsequently pure water flux values were again recorded (Jw₁). Flux recovery ratio (FRR) evaluated to measure the antifouling performance of the membrane.

%
$$FRR = \frac{J_{w1}}{J_w} \times 100$$
 equation (6)

Dye and antibiotic rejection studies

Some familiar dyes viz. Acridine Orange (AO), Amido Black (AB), Congo Red (CR), Methyl Red (MR), Methylene Blue (MB), Rhodamine B (RB), and Methyl Orange (MO) were considered as model dye foulants to study the dye rejection ability of the fabricated membrane. Similarly model antibiotic solutions of Amoxicillin, Azithromycin and Tetracycline were also prepared. First, 20 ppm solution of each dye and antibiotic was prepared using distilled water and a dead end setup was employed in which the coupon membranes (45 mm diameter) were carefully mounted. Each cycle consisted of 100 ml of the dye or antibiotic solution. The membranes were compacted and samples were collected for UV-Vis analysis. By determining the permeates' concentration through a UV-Vis spectrophotometer, the rejection efficiency of the SC-IPN membrane was calculated using the following equation:

% Rejection =
$$[1 - \frac{C_p}{C_f}]$$
 equation (7)

where C_p = permeate's concentration and C_f = feed's concentration.

Salt rejection studies

A 2000 ppm NaCl solution was prepared to assess the salt rejection performance of the fabricated SC-IPN membrane. The concentration of the permeates was surveyed through TDS (total dissolve solute) meter at regular intervals. The rejection analysis were carried out in an in-house FO set-up, owing to its low pressure requirements and FO being the most suited system for such membranes (nanofiltration/ultrafiltration). All the experiments were performed in triplicates/thrice. The experiment was conducted for a further 21 days to assess the membranes' durability. The following equation was employed for gauging the rejection performance,

% Rejection =
$$1 - \frac{Cff - Cfi}{Cdi} * 100$$
 equation (8)

Where C_{ff} , C_{fi} , and C_{di} represented the final feed concentration, initial feed concentration, and initial draw concentration in ppm, respectively.

Mercury removal experiments

1, 10, 20, and 100 ppm of HgCl₂ solutions were taken as model heavy metal contaminated samples. A dead-end set up was employed to carry out the process. Membrane coupons of 45mm diameter were mounted onto a dead-end set up and each cycle of removal consisted of 100 ml of the feed heavy metal solution. The heavy metal solutions were kept in contact with the membrane for a period of 2 hours after which permeates were collected with an application of a 1 bar vacuum. The Hg (II) ion concentration in the permeates were determined using an ICP-OES machine. The removal percentage of Hg (II) ions were calculated using the equation,

%
$$R = \left(\frac{C_o - C_e}{C_o}\right) \times 100$$
 equation

(9)

where Co and Ce are the initial and equilibrium concentrations of the Hg (II) solutions.

Microplastic Removal

The following stages make up the study on membranes' capacity to filter out microplastics. To begin, a tiny section of PVC pipe used for sanitary purposes was ground into powder using emery paper with a mesh size of 800. The powders were mixed with DI water and centrifuged for 10 minutes at 14000–15000 rpm to produce microplastics containing colloidal suspension. The supernatant was meticulously removed. Next, using a dead-end setup, the supernatant solution (feed) was passed over the SC-IPN membrane, and the permeate was properly collected. Particle size was measured by performing dynamic light scattering (DLS) in both

feed and permeate. The characteristic absorption peaks of PVC obtained through a UV-vis spectrophotometer were applied to confirm the microplastic filtering ability of the designed SC-IPN membrane.

Chlorine Tolerance evaluations

Chlorine tolerance evaluation in membranes commonly involves a comparison of the efficiency variation in salt rejection before and after exposure to concentrated sodium hypochlorite solution. The level of chlorine tolerance of the fabricated membrane increases with decreasing deviation. The membrane was initially immersed in a 2000 ppm (pH = 10) solution of sodium hypochlorite for more than 4 hours. After a thorough DI water wash, the membranes were tested to see if they could reject 2000 ppm of NaCl solutions in a manner like the salt rejection studies that were stated previously.

Invitro cytotoxicity measurements and recyclability studies

When determining the cytocompatibility of substances, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] cytotoxicity assays are frequently carried out. In these tests, metabolic activity serves as a proxy for cell viability. The yellow-colored water-soluble MTT metabolically turned into blue-violet insoluble Formazan when comes in contact with a living cell. The photometric evaluation of color intensity after Formazan was dissolved in DMSO gives a direct correlation between the color intensity and the number of living cells. For this experiment, the cell line L929 (NCCS/1469) was employed. Prior to the test, the cells were correctly maintained and cultured in Minimum Essential Media (MEM) containing Foetal Bovine Serum (FBS) (10%). To create the sample extract, 1 g of the sample (IPN membrane) was sterilized at 121°C for 15 minutes. The extract received 10 ml of fully prepared MEM

medium, which was then incubated for 24 hours at 37 °C (with 5% CO2 atmosphere). For the assay, a concentration range of 10 to 100% was maintained, with 100% corresponding to the neat extract.

10,000 cells per 100 ml of MEM culture per well were carefully seeded into a 96-well plate and kept there for 24 hours to successfully create a semi-confluent layer. The layer was exposed for 24 hours in the concentration range (10–100%) indicated above. By using an optical density (O.D.) measurement at 570 nm, the formazan formation in the growth control and concentration-treated sample was completely compiled at the end of the allotted period. For each treated concentration, the percentage of the proliferation of inhibition was computed through viability of cells using the following formula:

% Viability =
$$\frac{0.D \text{ for extract}}{0.D \text{ for blank}} \times 100$$
 equation (4)

All the membranes used for dye and salt rejection were placed in a 100 ml round bottom flask filled with DMF and heated at 140 0C for 10-15 minutes to test the membranes' sustainability and recyclability. For a successful workup using the liquid extraction method, DCM and water were added to the blackish solution mixture. The extraction of DMF, salt, and dyes was done based on their various solubilities. The polymeric components could be obtained by evaporating the solvents, and as previously noted, the membrane was rebuilt using the NIPS method.

1. <u>Predicting structure using Density Functional Theory: DFT calculation setup</u>

For all density functional theory (DFT) computations in the ground state (0 K), VASP (Vienna Ab initio Simulation Package, v5.4.4) was used. Projector-augmented-wave

(PAW) potentials with valence configurations of $2s^22p^2$ for C, $2s^22p^4$ for O, $2s^22p^3$ for N, $3s^23p^4$ for S, and $1s^1$ for H were used to describe the valence electrons. Subsequently, Perdew, Burke, and Ernzerhof's (PBE) flavor of the generalized gradient approximation (GGA) functional was employed to describe the exchange-correlation potentials of the constituting elements. In addition, vdW correction (PBE-D3) with the Becke-Johnson parameters was included for the Grimme formulation. The accuracy of the electronic calculations was found to be within 1 μ eV/atom. A gamma point energy calculation was performed to test the initial convergence of the input lattice. From the k-mesh calculations, it was concluded that a k-spacing of 0.2 Å-1 was sufficient for the required accuracy of 1 meV/atom when the cutoff energy was set to 500 eV. Ionic relaxations were performed until the Hellmann-Feynman force on each atom reached in the order of 10 meV/Å.

Unit cell parameters

The unit cell of OH-COF

Unit	cell	of	OH-CC)F gen	erated by	Tridip	Das	using	Ovito	and	Avoga	adro
1.0												
	28	.232	156862	268	-0.0	45200601	19	-	-4.9004	18188	819	
	-14	.124	424924	115	25.4	90615274	49		2.8518	35728	881	
	-0	.764	479704	160	0.0	71327885	58		4.5199	98934	101	
C	2	H	0	Ν								
54	1 3	6	12	6								
Carte	esian											
	2.59	1902	2867		15.57865	6114		0.578	823685	5		
	2.80	7489	9140		14.63203	7813		1.595	5202423	3		
	4.04	3582	2397		14.00952	8086		1.749	006658	3		
	5.09	904(040		14.29211	4040		0.880	027393	3		
	4.88	8501	1247		15.20274	3430		-0.153	3793090)		
	6.93	696(0530		12.67297	2175		0.292	2347147	7		
	3.65	6223	3078		15.87698	1685		-0.297	564154	1		
	6.42	2011	1460		13.65096	0997		1.144	449975	5		
	7.09	5015	5082		13,93425	7500		2.334	361641	L		

8.268326986	13.263981049	2.680233048
8.765838302	12.235788487	1.867042484
8.079407007	11.935373685	0.659814588
-0.773681276	18.653669392	1.994944840
0.840153971	17.218581665	0.885936195
10.307028779	10.397038085	2.056601937
-1.260794851	16.199443769	1.711212467
-0.383895891	17.343127935	1.506983723
11.471105349	9.847980589	1.527550238
11.557199562	8.388494781	1.516951350
12.269820686	10.674550158	0.664511445
-2.336993008	16.361111846	2.678521049
-2.553078884	17.590765381	3.425657689
-1.754546064	18.753254782	3.037890267
13.226815925	10.030001318	-0.203452212
13.368714974	8.573087944	-0.248683821
12.461805140	7.785838423	0.565205806
-2.127031426	20.006245260	3.557155598
-3.257974414	15.324260785	2.737327049
12.404608530	6.426562818	0.281185411
14.070060391	10.844918275	-0.937570138
16.794440635	12.012538361	-2.563935422
16.369932224	11.159391989	-1.534143194
-1.291818592	24.770462014	2.602674709
-1.177980520	23.398475267	2.474730334
-1.902212742	22.498261564	3.273781491
18.102768864	12.521581845	-2.587528449
-2.804947336	23.064527349	4.195423970
-2.886560103	24.462496269	4.347897793
-2.145901917	25.350210064	3.552900887
-6.259797841	14.415547138	2.243864531
-7.469747212	13.728714716	2.240761992
20.355948554	12.901511417	-1.571838222
-6.951617936	12.762831955	4.376096703

-5.698962503	13.394321426	4.336571866
-5.399629743	14.330188835	3.336295640
19.016739053	12.265504730	-1.553934161
12.499174653	3.515958180	-0.092976158
12.589290525	2.134229875	-0.099569617
11.834009879	1.331215664	0.772705596
10.946768150	1.991235675	1.633909506
10.807673326	3.392880336	1.621905727
11.621992756	4.183005355	0.770506816
18.565526301	11.476738532	-0.490713113
17.274445961	10.938195960	-0.479268201
4.923581418	15.525091311	3.670756775
1.982183323	14.385947403	2.268857817
4.188750780	13.327289601	2.585358245
6.420323303	12.399123005	-0.627180155
6.686532158	14.659689149	3.035358039
9.596651160	13.470236240	-0.946178099
3.172603625	16.670231269	2.445628112
8.469937162	11.173997426	-1.081846949
0.505426751	15.339615992	0.450327863
10.907489017	12.167771698	1.500101078
1.530297753	18.065211503	0.876587361
9.534545279	9.725243844	2.439516179
16.976663557	10.271341523	0.333866353
-2.932024490	19.981649336	4.291664828
-4.377085716	16.023766419	4.211119914
17.572556535	13.282257304	1.126570800
13.018814032	6.053458053	-0.540939544
-0.897436415	20.895441776	2.340168768
13.893928997	11.917842354	-0.900881999
-3.149121802	14.513173867	2.026359678
15.663030039	12.628387110	0.159185586
-0.759845421	25.374415587	1.872278931
-0.509837540	22.989743945	1.713932841

-3.620772703	24.809061771	5.072070200
-3.940302866	13.520527458	5.044755129
-5.999746409	15.064168734	1.404777162
19.400961148	13.801574055	0.951616833
-3.542050772	21.399442299	4.847145468
-7.123666674	12.061469209	5.187550966
13.127470604	4.082287775	-0.781591519
13.272760673	1.695864998	-0.818103035
10.581289111	3.629718848	-1.237901370
10.313305707	1.447220375	2.333878550
11.041871433	6.041882543	1.676811571
19.185595083	11.318880270	0.390103009
15.201869013	9.365358921	-1.569575740
2.676295950	16.895305610	3.277875210
8.579247177	10.949994910	-0.115614625
-1.085009552	15.119851194	1.062807675
-0.228834803	19.695027266	1.477777060
-3.515649958	17.680838875	4.250010149
10.782755275	7.684613109	2.240713654
12.110229984	11.951560416	0.647054418
14.242412225	8.023669718	-0.983591390
15.159437532	12.391293598	0.975777451
-3.637400493	22.352928919	5.011376419
-4.793400873	13.105712004	5.304167179
9.892804256	4.074014530	2.368135945
1.264982382	16.054647070	0.352866459
10.069448883	11.709440424	2.031433638
-4.308966232	15.223257912	3.544760427
-1.620480827	21.137256382	3.075215364
11.628066936	5.570659407	0.943201767
15.147184367	10.408896747	-1.612979675

Table 2: The unit cell for SH-COF

Unit cell of SH-COF generated by Tridip Das using Ovito and Avogadro

1.0						
	29.43	429189	977		-0.6319547146	0.5881321543
-	-15.26	66722	700		26.0751291458	0.0674356290
	0.332	276508	360		0.2357442893	14.9653050613
С	Н	Ν	S	0		
120	156	6	6	18		
Cartesi	an					
4.	433263	3166		14.	461677155	7.879156170
4.	57918	6869		13.	093878536	8.174075212
5.	777562	2791		12.	431757438	7.969154851
6.	90704	5075		13.	114123880	7.474891535
6.	741788	8379		14.	462958991	7.124471179
9.	257663	3878		12.	918301453	6.554608725
5.	53226	0618		15.	120261173	7.298335575
8.	21857	0356		12.	451383369	7.381162934
8.	48576	7081		11.	344287059	8.201737241
9.	72681	3191		10.	726551983	8.201462134
10.	76244	9049		11.	179857233	7.357009640
10.	497888	8710		12.	295849509	6.548553494
1.	384333	1924		18.	206789854	8.652410023
2.	909374	4157		16.	345031209	8.306227576
12.	34828	6409		9.	351947104	7.670104193
0.	516208	8362		15.	831861100	8.651719510
1.	60900	7828		16.	775964505	8.553333205
13.	626638	8654		8.	827553419	7.652546581
13.	74694	4459		7.	447155319	8.134030987
14.	76254	6064		9.	606847524	7.202032136
-0.	84270	4946		16.	362228279	8.726634710
-1.	12036	9041		17.	789416000	8.815943562
0.	02368	5706		18.	698798702	8.803526352
16.	075544	4473		8.	950791795	7.227011735
16.	222052	2732		7.	530634017	7.524162238
15.	056473	1162		6.	806850416	7.979319379
-0.	22313	7230		20.	067629293	8.907814250

-1.844309373	15.415810039	8.601255670
15.109101866	5.461258091	8.304692610
17.176986461	9.768030137	7.079263697
20.809092037	9.841528189	6.824902067
19.537534474	10.172879279	7.325116567
2.054993263	24.367476031	8.506798858
1.938346845	22.987253941	8.457533786
0.794242745	22.335725764	8.950149061
21.914638650	10.629928099	7.109640305
-0.218989109	23.116520425	9.544966283
-0.114352740	24.502362620	9.575778790
1.014928516	25.140928844	9.042043770
-4.114084873	13.450043797	8.128070945
-6.575721503	14.681921713	7.660777390
-5.463056053	15.442265467	7.987091813
-4.205925450	14.858333677	8.228266134
21.779279972	11.814278559	7.850491127
16.220094034	3.322959788	8.424170060
17.343855974	2.712162266	9.002248166
15.172525352	1.144396673	8.292567847
15.144187041	2.504582804	8.039959345
20.499823671	12.167729010	8.309694717
19.403284466	11.351001733	8.074459896
9.201314695	8.678634309	9.398417126
-2.507203519	11.681804450	7.721526464
-2.471934914	22.908199666	10.482685011
5.226526832	16.697534038	5.553382085
20.788991787	8.866691940	4.628537107
5.447247300	18.148302869	5.221763615
9.858561448	7.716052587	10.346138166
12.764282499	2.930837840	5.324162081
20.520847185	10.274302624	4.159351233
-3.183088381	21.976502411	11.431500757
-2.523940441	11.819827462	6.218199618

11.730414373	3.931492386	5.858344869
20.524682453	10.461105096	2.645923227
10.778740901	8.263713640	11.441890625
4.514050168	19.138676714	5.965697687
-2.263007710	21.286392987	12.448365699
-1.097173367	11.937901854	5.573196066
0.113974560	11.882265076	6.513106838
-2.972412894	20.512196182	13.566005093
20.663390464	11.938560524	2.243755991
11.869071438	5.317339014	5.225301808
10.127200476	9.093551490	12.559983869
5.212496750	20.327053123	6.639676728
10.977140569	6.406236959	5.834082382
9.455678362	6.196643540	5.736285018
1.427974344	11.572221442	5.784337369
1.562728076	10.122321894	5.281309762
19.399333472	12.809218429	2.239427631
18.686825148	13.048533981	3.576392483
5.837084171	20.038368457	8.014137721
7.191921440	19.311087142	8.020551394
-3.496140285	19.110546539	13.221282942
-4.737375694	19.015684352	12.324214110
9.966961445	10.607204388	12.291125500
8.546524879	11.052978127	11.925087575
8.845032430	5.376041645	6.879300772
1.237982559	9.038766779	6.322017345
17.779178895	14.285241392	3.524462672
8.377487206	20.142408157	7.487438715
-5.926273926	19.831443626	12.840732540
8.403849116	12.497300644	11.423257971
16.898759660	14.464127370	4.772645902
15.481610440	13.889124892	4.632575239
14.551900385	14.815001720	3.839770613
13.158229335	14.224589802	3.650074311

7.316394309	5.417343487	6.994149865
6.527700248	4.679482155	5.901781156
6.236749209	5.491582990	4.638670993
5.401044106	4.726485633	3.613233937
8.542806062	13.614746311	12.470016041
9.946916103	14.029766275	12.938854940
10.767292875	14.921806175	11.992081026
11.395123848	14.221265215	10.787720381
2.079284514	9.097742781	7.604828594
3.493554423	8.512038936	7.484402076
3.554175126	6.987951692	7.295257745
2.875531760	6.215800650	8.424900738
9.263783063	20.746044452	8.583330396
8.537131645	21.714643585	9.515792828
9.448002007	22.302228182	10.594470156
8.687458915	23.237542583	11.527002514
-7.278512884	19.435352177	12.246708870
-7.392656931	19.608215934	10.732915154
-8.819439615	19.354737468	10.241809509
-8.944149551	19.437210817	8.725843122
-6.484538013	13.282355420	7.567303673
14.126125802	2.925464891	5.962192058
16.295788272	0.533485175	8.859963205
17.397286782	1.335650608	9.194600403
-5.238951136	12.693608112	7.811925031
12.923838618	3.056322612	4.244697731
22.879536148	10.334567277	6.693727729
20.373546647	13.062159074	8.918020267
2.928443002	24.855230268	8.074585518
17.005869817	10.843239984	6.984332052
3.721612024	12.558918476	8.585008448
7.571196288	15.044348305	6.722315430
9.098205922	13.767322195	5.891574979
2.353913939	14.452804758	8.335095783

12.863631109	11.146507560	6.993325208
-1.250433616	20.414490539	9.007534754
14.188617985	4.993806985	8.657840429
-5.147614972	11.608021855	7.830420937
-0.909079949	25.096082183	10.020565554
-3.318921648	16.735238446	8.641805059
3.705344910	17.082743194	8.224690109
1.699684438	20.436578106	8.714248544
5.829538135	11.366821452	8.191185287
-8.066106718	20.038254347	12.729028480
11.288145689	12.659564912	5.891458622
2.722599212	22.380034242	8.003973486
18.435289479	11.597795645	8.507996894
11.553379323	8.688364289	7.993180326
18.544984869	8.304238316	7.077050074
7.735629119	10.982721796	8.897455598
19.572200978	10.606931212	4.609470765
9.054678351	7.094317305	10.764638447
10.473332591	7.062621566	9.698633118
6.499578002	18.377098241	5.451123601
5.319725161	18.233253063	4.136685179
-3.715223494	21.235761682	10.812194733
-3.954154052	22.579768605	11.930959040
14.326669220	0.536924473	7.970510966
-1.012176636	11.141009075	4.821586836
-1.062120006	12.888108137	5.019776793
-1.571249112	20.613854393	11.919884461
-1.635070554	22.063412265	12.913414720
21.373239550	9.896639901	2.232846300
19.621993440	10.016397593	2.200559908
18.181177502	3.342143292	9.300285441
-3.149305032	12.669785098	5.919696009
11.245327535	7.377537038	11.894748525
11.601925042	8.832230024	10.983600002

3.914592240	18.619129307	6.726159436
3.790360007	19.524030832	5.233970684
-1.545388345	14.375478598	8.517089451
12.917981415	5.650616132	5.306322501
11.656477596	5.232255481	4.145570334
11.231018731	7.351100246	5.327611770
11.259375720	6.536489508	6.891746269
9.206539424	5.745613910	4.760861282
8.968432742	7.186337176	5.745746697
0.213128766	12.839610712	7.047222494
-0.045097430	11.117451567	7.284555096
2.261642578	11.789912807	6.471566140
1.564680188	12.258675332	4.931241532
2.587762705	9.985304198	4.899126465
0.903550840	9.962811582	4.412441552
21.419555725	12.408741707	2.898930782
21.085699511	11.977126890	1.228145028
18.674086867	12.392379282	1.519404412
19.693619259	13.793219716	1.833993022
18.088600974	12.164405063	3.858621441
19.429799538	13.194266689	4.381430335
5.958302044	20.766595089	5.954476248
4.447554320	21.105275864	6.785840927
5.107150474	19.456132426	8.600456495
5.960874136	21.000522774	8.537679822
7.106550185	18.366201082	7.466392550
7.411289513	19.008265066	9.058151541
-2.236823098	20.384845777	14.374952361
-3.781268414	21.129067211	13.991814606
-3.738852371	18.610867153	14.173856991
-2.678443378	18.524729873	12.768877861
-5.030862572	17.952167683	12.271853468
-4.485844495	19.306288703	11.291979831
10.760339612	8.969657574	13.449897207

9.152247198	8.650659140	12.830879039
10.284618325	11.150648514	13.192708613
10.662664383	10.908703160	11.489306997
7.887355987	10.908512443	12.799636156
8.148612646	10.381806389	11.145793678
12.390876777	1.902750318	5.481100765
-7.494951206	18.382802354	12.503989401
21.289991487	10.923740786	4.607222773
12.705347268	13.997305368	4.627898728
15.049082421	13.719270914	5.631579490
17.400188468	13.988728838	5.631067564
16.817426940	15.534054497	5.023446294
13.194741651	13.282490475	3.083897406
14.462200488	15.781844271	4.361161299
14.984596560	15.039793770	2.849998857
18.417537086	15.171251247	3.379272159
17.140679279	14.230361593	2.625552161
15.526685304	12.894899513	4.153554150
9.166311041	4.324259794	6.813925470
9.264350055	5.758793435	7.823955298
6.986345969	6.468593287	7.051666981
7.054254016	4.966979345	7.964220336
7.066635856	3.754241753	5.624350462
5.562860087	4.355644351	6.327701830
7.180816184	5.785125623	4.153007797
5.715160177	6.423668170	4.910297508
5.834767093	3.733549037	3.419944307
5.387063724	5.268425409	2.658079069
7.397120211	12.593694745	10.986259293
9.103391540	12.664111893	10.589304663
8.046697204	14.519453795	12.076893001
7.957672461	13.318918773	13.357534530
9.820025531	14.600474617	13.872040089
10.544761658	13.146967040	13.210534598

10.138197870	15.756298656	11.635311710
11.584711210	15.381063530	12.570117234
10.646713532	13.896172155	10.053981280
11.945880686	13.323693264	11.108240591
1.787061446	6.376798388	8.420510317
4.025620863	8.987272187	6.643478737
1.537161199	8.573970808	8.406912844
2.157414509	10.143464265	7.943464244
3.245246306	6.540764484	9.409440950
3.108508601	6.685542629	6.335640115
4.612005236	6.686473992	7.246324811
1.354379032	8.049544088	5.848469819
0.174043163	9.115116719	6.596301561
4.063655876	8.773964579	8.392372123
9.014207228	19.518190680	6.842736368
8.004076655	20.957870298	6.844398109
10.116776212	21.266921320	8.115810274
9.694497467	19.926358415	9.184831028
8.095574462	22.533143004	8.919818494
7.693627824	21.198119432	10.005403189
10.279506470	22.852943248	10.122840978
9.907338986	21.492913788	11.185379003
8.217741054	24.059211229	10.966461679
7.878322107	22.691714948	12.035645376
-5.984169225	19.715718461	13.936357366
-5.752722830	20.905557667	12.657424185
-7.079043123	20.628976821	10.450285510
-6.697355550	18.919885389	10.223162891
-9.498907585	20.090821276	10.703133555
-9.164389877	18.364561354	10.580336925
-8.598431975	20.411745071	8.351573637
-8.319079222	18.666666871	8.247930125
-11.218845565	20.167017196	8.671427744
4.371199015	4.346868852	8.511987640

3.761017427	3.914189967	5.199105176
11.841400729	16.253443486	9.604800241
10.545545836	24.618124662	12.111683073
12.607287349	15.494439554	1.697090905
18.282648221	0.886635721	9.644865393
17.056317162	5.228298472	7.931112650
-5.537966368	16.529909952	8.036537055
-7.519160218	15.187013073	7.455244427
-3.004208638	10.905503875	5.840668378
10.730200559	3.526363530	5.640969458
11.812314228	4.003712459	6.952918613
16.206006567	4.706705042	8.214523507
3.205026695	15.050528327	8.161823861
12.036387352	10.605752081	7.323184188
-3.149093283	15.712083247	8.536696372
0.780858377	20.947810956	8.864774009
18.448815827	9.337784973	7.068599658
11.953857412	15.352561527	2.870541523
3.626406069	4.545051397	4.011131840
-10.619041356	19.105956882	8.088347358
3.036424490	4.400907978	8.304470891
12.656820416	15.225792585	9.930546367
9.680135317	23.928214163	12.887559757
14.024175707	2.991339924	7.355467730
15.189468792	2.786170858	5.395476602
10.047746251	9.750628507	9.137671145
5.464870835	16.466430818	6.914517591
0.727973821	14.578012921	8.630906119
2.376643267	19.007909588	8.593836808
-2.314045341	18.216811663	8.893453702
12.774018797	6.831701098	8.634220335
14.632394579	10.809899692	6.822735906
17.362838695	6.956670662	7.427459327
20.945462109	8.715850030	6.020601526

-1.209668108	22.405755965	10.205570339
-2.917329611	23.934059021	10.010244755
8.122540922	8.528261917	8.859362472
4.909511259	15.810754004	4.790645960
20.897240164	7.878727129	3.942436911
-2.943953511	12.798655469	8.472391923
-2.067051145	10.737800239	8.333362698

2. Deconvoluted XPS spectra

COF, (c) IPN and (d) SC-IPN membranes.

3. <u>13C-NMR and BET of OH-COF</u>

Figure S2. (a) 13 C-NMR and (b) N₂ adsorption-desorption isotherm for OH-COF.

4. Thermal profile of OH-COF and SH-COF

Figure S3. Thermogravimetric profile of the COF particles.

5. <u>AFM line profile</u>

Figure S4. AFM line profile of the neat IPN and SC-IPN membranes.

6. Pore size distribution of neat IPN membranes

Figure S5. Pore size distribution of the neat IPN membranes via imaging 100 pore diameters from SEM

SEM micrographs were taken from various sections of the membrane to calculate the pore size distribution, and around 100 pore diameters were measured using ImageJ software. A histogram employing equation (3) mentioned in supplementary information was plotted, deliberating on the collected pore size data. The pore sizes were seen to range between 300-500 nm.

7. SEM and EDAX of OH-COF

Figure S6. Surface morphological features of OH-COF and its EDAX spectra.

8. Pure water stability studies

Figure S7. Pure water flux stability of the SC-IPN membranes.

9. <u>UV-Vis spectra for the dye solutions</u>

Figure S8. UV-Vis spectra of the feed and permeate dye solutions.

10. Dye rejection longevity

Figure S9. Dye rejection cycles for cationic and anionic dyes

11. UV-Vis spectra for the antibiotic solutions

12. FTIR spectra of PVC pipe powder

Figure S11. FTIR spectra of neat PVC powder versus the PVC powder obtained from sanitary pipes.

To have an idea regarding functional groups present in neat PVC and PVC pipe powder FTIR spectra for both were recorded in the wavenumber range 4000 to 615 cm-1. From Fig. S5, strong absorption peaks at 2912 cm-1 and 2920 cm-1 in both spectra were attributed to CH2 bending. The carbonyl stretching frequency in 1738 cm-1 in the case of pipe powder indicated the presence of carbonyl-based additives. The characteristic peak at 1426 cm-1 and 1252 cm⁻¹ is associated with the angular deformation and out-of-plane angular deformation for the CH-Cl bond. Some additional peaks in the range of 900 cm-1 to 1230 cm-1 in PVC pipe powder could be ascribed to the addition of plasticizers or other associated additives. The C-Cl stretching resulted in an absorption peak near 690 cm-1 in both systems, indicating the presence of PVC.

13. SEM micrograph after microplastic removal

Figure S12. Surface morphology and EDAX elemental mapping after microplastic removal.

14. <u>DLS of feed and permeate microplastic solution when passed through SC-IPN membranes</u>

Microp	lastic Fe	ed Solution			(b)Perme	ate Soluti	ion		
Measurement Pa Temperature Liquid Viscosity Ref.Index Flu Angle Wavelength Baseline	arameters: = 25.0 = Wate = 0.89 id = 1.33 = 90.0 = 658.1 = Auto	deg. C ir o cP))) nm (Slope Analysis)	Runs Completed Run Duration Total Elapsed Time Average Count Rate Ref.Index Real Ref.Index Imag Dust Filter	= 5 = 00:00:30 = 00:02:30 = 7.3 kcps = 1.533 = 0.000 = Off	Measurement Temperatur Liquid Viscosity Ref.Index F Angle Wavelength Baseline	Parameters: e = 25.0 = Wate = 0.89 luid = 1.33(= 90.0(n = 658.(= Auto	deg. C 97 0 cP 0 0 nm (Slope Analysis)	Runs Completed Run Duration Total Elapsed Time Average Count Rate Ref.Index Real Ref.Index Imag Dust Filter	= 5 = 00:00:30 = 00:02:30 = 2.3 kcps = 1.533 = 0.000 = Off
Effective Polydispe Baseline Elapsed	Diameter: ersity: Index: Time:	4276.4 nm 0.611 0.0 00:02:30	100 Atria 75 0 25 0 50.0 Dian	50000.0 neter (nm)	Effective Polydisp Baseline Elapsed	e Diameter: persity: e Index: Time:	539.8 nm 2.553 0.0 00:02:30	100 Age 25 0 0.5 Dian	50000.0
			Lognormal D	Distribution				Lognormal D	Distribution
Run	Eff. Diam. (nm)	Half Width (nm)	Polydispersity	Baseline Index	Run	Eff. Diam. (nm)	Half Width (nm)	Polydispersity	Baseline Index
1 2 3 4 5	1764.5 6629.9 772.3 1187.9 1086.2	1130.6 3581.2 592.2 887.8 842.1	0.411 0.292 0.588 0.559 0.601	0.0 0.0 0.0 0.0 0.0 0.0	1 2 3 4 5	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.000 0.000 0.000 0.000 0.000	0.0 0.4 0.7 0.0 0.0
Mean Std. Error Combined	2288.2 1097.2 4276.4	1406.8 550.3 3342.8	0.490 0.060 0.611	0.0 0.0 0.0	Mean Std. Error Combined	0.0 0.0 539.8	0.0 0.0 862.5	0.000 0.000 2.553	0.2 0.1 0.0

Figure S13. Dynamic Light scattering of feed microplastic solution and the permeate obtained thereafter.

The DLS studies were performed to get an idea of the size of the microplastics present in the spiked sample. It was observed that the colloidal suspension consisted of particles in the size range of 1000-7000 nm, whereas the permeate solutions had a size range of merely 500 nm, which further corroborated the efficient removal of microplastics via the fabricated SC-IPN membranes.

15. Microplastic removal efficiency

Figure S14. Microplastic removal efficacy of SC-IPN membranes

The SC-IPN membranes, having smaller pore sizes than the conventional microplastics, were potential candidates for removing microplastics from feed streams. From the UV-Vis spectra of the feed and permeate solutions coupled with the DLS analysis, the membranes were found to completely remove the microplastic, with their efficacy reaching up to 100%. Similar performance was observed in the next 10 operational cycles as well.

16. EDAX elemental mapping of the SC-IPN membranes after Hg(II) removal

Figure S15. SEM micrograph of the SC-IPN membranes after Hg(II) removal and the elemental mapping showing the presence of mercury on the membrane surface.

17. Concentration of Hg(II) in the permeate solutions determined by ICP-OES

Figure S16. Hg (II) ion concentration in the permeate solution obtained after passing the solutions through SC-IPN membranes. The measurements were done using ICP-OES.

18. FTIR spectra before and after Hg (II) removal

Figure S17. FTIR spectra of the SC-IPN membranes before and after Hg(II) removal.

From the FTIR spectra of the membranes after Hg (II) removal studies, it was seen that the thiol -SH peak was strategically absent from the spectra. Such observation further validates the formation of complexes between the thiol groups present and the incoming Hg (II) ions from the feed side.

19. Cytotoxicity assessment of SC-IPN membranes

					1	
	TING SERVICES	(BIOTECH TESTING SERVICES			
	TEST REPORT		Invitro Cytotoxicity Net	MTT (3-4, 5 dimetrythiazoi-2-y0-2.5 diphenyl terazolium bromide Cytotoxicity assay. Test procedure is based on	antiquer a total	
LAB NO.: 2381443/1	P	ATE: 06/07/2923	Test Rendered	measurement of viability of cells via metabolic activity. Yellow water soluble MTT is metabolically reduced in viable cells	1. For the assay, a concentration range from 10%- 100% was maintained.	
ULR NO. TC84842310000001	196		1. ISO 10993-6 2009 (E) Biological evaluation of medical devices. Tests for in vitro cytotocicity	to a true work insolute Formazan. The number of vace cets consistes to the cocur intensity determined by photometric measurement after dissolving the formazan in CMSO.	2. At all concentration set in the assay the sample was found to be Non toxic to the cells	
NAME OF CUSTOMER	INDWN INSTITUTE OF SCIENCE (ISC)		 ISO 10985-12 2004 (E) - Biological evaluation of medical devices; Sample preparation and reference materials. 		conclusion	
ACCRESS	: Bangalore - 560012 Kamataka		Scope of lent	Assay Procedure: 1975 rate seated in 95 and olders at a concentration of 15 Whitels ner 135 of MIM orders method our and enco	Test product labeled as "SC-IFN" under the extract testing conditions is found to be Nontoxie for the cells of cellular	
REFERENCE	: Letter Ref. Nil dated June 29, 2023		Test for cytotoxicity are designed to determine the biological response of mammalian cells to the test material Extract	maintained in outure for 24 hours to form a semi confuent layer and ever exposed to the text material over a range of	outure.	
	Kind Atlantion: Samir Mandal		of test material. At the end of the exposure time, the evaluation of the presence and the extent of Cytotoxic effect is	concentration. After 34 hours exposure, Formazan formation is determined for each treatment concentration and	Dudamer.	
DATE OF RECEIPT	: 28/06/2023		assessed. It signifies Biological compatibility of the test material and its potential to cause cell damage.	compared to that determined in growth control.	Any optitolic effect can be of concern. However, it is primarily an indication of potential for in vivo toxicity and text material cannot	
GATE OF INITIATION	1 29/06/2023			Validity Demontana = 100 x O. 0. 570 nm for actual Validity Demontana = 100 x O. 0. 570 nm for actual	resident to content contents of the number of content and a decempt per-	
DATE OF COMPLETION	< 08/01/2023		Cells line and Experimental details:	0.0.870 nm for blank		
SAMPLE DESCRIPTION	Test sample labeled as-		Denine (Dety (ACUS) 1459)	Evaluation oriteria:		
Sr. No. Description			Incubation Conditions 37°C with 5% Carbon dioxide atmosphere	The lower the viability percentage value, the higher the cylotoxic potential.	For BIOTECH TESTING SERVICES	
1. SC-IPN			Cell Culture Medium (MEM medium (ALG47) LN0005465512) with 10% FBS (FMI 1542(LN0005402153)	The percentage viability of 100% test sample is < 70%, it has cylotoxic potential.	AND A	
-			Positive Control PU sample	The percentage values of norm and sample is a row, it is non-systemic.	Pore 1	
			Negative Control (PE sample	Results	and and	
	-		Disert Compare MEM markum Teel Sangle: Representing portion of the supplied text sample was used for the assay Represented and advantation	201400 Note control control Annot bit 206 bit 206 bit </th <th>(* UNA) De Sing u Nav Guitty Monger References Elgennyy</th>	(* UNA) De Sing u Nav Guitty Monger References Elgennyy	
			To fay mean same, To di Colongine MMI melane ana alla di Di Type per Industri a 175 fo 21 Nove Range Concentration res 20% 30% 40% 50% 60% 70% 60% articul 100 novol	2301445/1		
				2 - 39 9 10% 20% 30% 50% 50% 50% 50% 50% 50% 50% 50% 50% 5		
- Sanglies a - The report sh	en not down by the laboratory . Results relate only to the samples tested hall not be reproduced except in full without prior permission of this laboratory.	2301443-1 Page 1 of 4	201044-1 - Samples are not drawn by the laboratory - Results indiae only to the samples tables - This report shall not be reproduced except in full without prior permission of the laboratory.	201144.0 - Sampline are not down hy the laboratory - Results value only to the samples tested - This mport shall not be reproduced except in full without pro permission of this laboratory	200240.0 - Samples are not deset by the laboratory - Results roles only to the samples served - This report chall not be reproduced except in Ma althout pror permission of the laboratory	
194(39)(20)(20), Miles, Potawala Ind. Ecste, L.B.S. Meg, Diateopor (H), Mumbar-40008, HOA + No: +0122-5002811, 2002812 all lub@tiote.thsstingservices.com/locauets@tiotechtestingervices.com/locatechtestingervices.genal.com/l-Mpa.nor@tiotechtestingervices.com		12-25002811, 25002812 air@biote/htealingservices.com	104/38/206/206, Malwa, Petanasia Ind. Datas, LB.S. Merg, Glaskopar (IN), Manikal - 40086, NDA + 161: +01-22-2000311, 2200312 Email: MdgBoandheatingenvices.com/accountsgBoand-ontoingenvices.com/biotechnotingenvices.com/biotechnotingenvices.com/	10(18)/20/20/206, Malwa, Petanwala Ind. Brate, LR.S. Marg, Ghateoper (H), Munhour - 40006, INDA + 16: -40 22-2002801, 2000312 (mail: MdgRostechtoringenvices:com/biolouringRostechtoringenvices:com/biolechtoringenvices@gmail.com/biolec.net/biolechtoringenvices:com	154/50/205/206, Midva, Petanasia Ind. Eturis, LAS. Marg, Ghatispar (H), Munikari - 400086, MDA + MJ - 491.22-2002H12, 2002H12 Email: Md/Biotechtextrgann/uss.com/betwent@filotechtextrgann/uss.com/biotechtextrgann/uss.gen	
	www.biotechtestingservices.com		A same Nater Median and as com	www.biotechtestinguervices.com	www.biotechtestinuservices.com	

Figure S18. Cytotoxicity reports for the SC-IPN membranes via MTT assay.

REFERENCES

- 1. R. S. Gupta, S. Mandal, S. Arya, S. Dutta, K. Manna, S. S. Islam, S. Pathan and S. Bose, *Chemical Engineering Journal*, 2023, **461**, 141949.
- 2. R. S. Hebbar, A. M. Isloor, K. Ananda and A. Ismail, *Journal of materials chemistry A*, 2016, **4**, 764-774.
- 3. G. Zhang, S. Lu, L. Zhang, Q. Meng, C. Shen and J. Zhang, *Journal of Membrane Science*, 2013, **436**, 163-173.