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Experimental

Material synthesis

Almond (Badam) shells from Xinjiang in northwest China were crushed into fine powder by 

a small high-speed grinder. The almond shell powder was firstly stirred in 2.25 M HF solution at 

room temperature for 6 h to remove inorganic impurities. After that, it was washed with deionized 

water to neutral and dried in the oven at 80 ℃ overnight. To enhance the cellulose crystallinity 

and regulate the amorphous component content within the precursors, the purified powder was 

stirred in 6 M and 10 M HCl solution, respectively, at room temperature for 6 h. Then, the powder 

was washed with deionized water and dried in the oven at 80 ℃ overnight. The obtained 

precursors, along with that solely treated with HF solution, were subjected to carbonization at 600 

℃ for 2 h in a tubular furnace under argon flow, with a heating rate of 5 ℃ min-1. After cooling to 

room temperature, the pre-carbonized samples were further carbonized at 1300 ℃ for 3 hours 

under argon flow with the same heating rate. The resultant hard carbon materials were denoted as 

A-2.25, A-2.25-6, and A-2.25-10, respectively. A sample treated with 2.25 M HF and 6 M HCl 

underwent a two-step pre-carbonization to investigate the influence of heating rate and residence 

temperature. This sample experienced a gradual temperature increase to 400 ℃ at a rate of 1 ℃ 

min-1 for 1 h, followed by a ramp to 600 ℃ at 5 ℃ min-1 for 1 hour before cooling to room 

temperature. Subsequently, the sample underwent carbonization under identical high-temperature 

conditions as the other samples and was designated as A-2.25-6-T.

Material characterization

Fourier transform infrared spectroscopy (FTIR) was performed using an infrared 

spectrometer (Thermo Scientific Nicolet iS50). The microcrystalline structure of all samples was 
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characterized by X-ray diffraction (XRD, PANalytical Empyrean 2 with Cu Kα radiation (λ = 

0.154 nm)) and Raman spectra using a Confocal micro raman spectrometer (Renishaw inVia 

Reflex). The nitrogen adsorption-desorption isothermal curves were tested on a Micromeritics 

ASAP 2460 analyzer to obtain the Branauer-Emmett-Teller (BET) specific surface area and pore 

size distribution. The morphology and structure of resulting samples were analyzed by field 

emission scanning electron microscopy (SEM, ZEISS Sigma 300) and a high-resolution 

transmission electron microscope (HRTEM, Talos F200X). The closed pores of all samples were 

characterized by Small-angle X-ray scattering (SAXS, Xenocs Xeuss 2.0, sample test distance is 

2480 mm). Thermo gravimetry-Differential scanning calorimetry (TG-DSC, Netzsch STA 449 F3) 

was used to study the pyrolysis process of precursor. Gases generated during pyrolysis were 

characterized by Thermal gravimetric analysis combined with mass spectrometry (TG-MS, TA 

Instrument, SDT 650+ Discovery MS) to analyze the structural evolution of hard carbon material. 

X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) was recorded to represent 

the chemical state of the sample surface. After discharging or charging to the specified voltage, 

coin cells were disassembled in a glove box and the electrodes were washed with 1,2-

dimethoxyethane (DME) and dried. Then, the electrodes were sealed in a container for ex-situ 

XRD and Raman measurement.

Electrochemical measurements

The electrochemical performance was measured using CR2016 coin-type half cells 

assembled in an argon-filled glovebox (Mikrouna, H2O, O2 < 0.1 ppm). The slurry of electrodes 

was prepared by uniformly mixing 90 wt.% almond shell-derived hard carbon powder, 5 wt.% 

sodium alginate (SA), 5 wt.% carbon black in an appropriate amount of deionized water. Before 
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assembling the cells, the pasted electrode obtained by coating the mixed slurry on copper foil was 

dried at 80 ℃ for 12 h under vacuum. The mass loading of active material is around 1 mg cm-2. 

Glass fiber (Whatman GF/A) and sodium foil were used as separators and the counter electrode. 

The electrolyte was a solution of 1 M NaPF6 in DME. The galvanostatic charged/discharged and 

galvanostatic intermittent titration technique (GITT) tests were operated on LAND-CT2001A 

battery systems (LAND Electronic Co., Wuhan, China) with a voltage range of 0.01-2.0 V (vs. 

Na+/Na). In the full cells, the hard carbon anode was matched with the NVP cathode. The NVP 

electrode was prepared by mixing 80 wt.% NVP, 10 wt.% PVDF, 10 wt.% carbon black in an 

appropriate amount of NMP solution. The pasted electrode obtained by coating the mixed slurry 

on aluminum foil was dried at 80 ℃ for 24 h under vacuum. To ensure the overall performance of 

the full cell, the mass ratio of NVP and hard carbon was kept at 2.5:1. The charge/discharge cut-

off voltage was set to 2-4 V, and the specific capacity was calculated based on the mass of NVP 

only. For the GITT test, the pulse current was set at 20 mA g-1 for 10 min and an interval of 2 h. 

An electrochemical workstation (PARSTAT MC, AMETEK) was used to record cyclic 

voltammetry (CV) at different scan rates of 0.2-3 mV s-1 between 0.01-2 V (vs. Na+/Na) and 

electrochemical impedance spectroscopy (EIS) between 0.01-105 Hz.
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Fig. S1. Optical photographs of acid-treated precursors

Fig. S2. SEM images of precursor without acid treatment

Table S1 Component analysis(wt.%) of almond shell

Samples cellulose hemicellulose lignin water ashes volatile

almond shell 27.3 20.8 31.9 2.91 1.78 71.62

A-2.25 29.6 20.1 33.4 3.42 0.4 78.1

A-2.25-6 33.9 15.1 37.9 4.63 0.33 73.3

A-2.25-10 45.4 / 45.3 7.3 0.22 73.0
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 Fig. S3. 002 fitting peak of (a) A-2.25, (b) A-2.25-6, (c) A-2.25-10, (d) A-2.25-6-T

Fig. S4. Deconvoluted Raman spectra of (a) A-2.25, (b) A-2.25-6, (c) A-2.25-10, (d) A-2.25-6-T
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Fig. S5.  Schematic diagram of the calculation of R-value from peak 002 for (a) A-2.25, (b) A-
2.25-6, (c) A-2.25-10, (d) A-2.25-6-T
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Fig. S6. Fitted SXAS patterns of (a) A-2.25, (b) A-2.25-6, (c) A-2.25-10, (d) A-2.25-6-T

The SAXS patterns are fitted based on the following model[1]:

I(q) =  
A

q4
+

B'a4
1

(1 + a2
1q2)2

+ D

I(q): scattered intensity as a function of q.

q: scattering vector.

A: proportional to the total surface areas of the large pores.

B′: proportional to the total surface areas of the small pores.

a1: the characteristic length over which electron density variations occur.

D: constant background term.

The radius of the pores can be obtained from the formula: .R =  a1 10
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Fig. S7 FT-IR spectra of A-2.25, A-2.25-6, A-2.25-10, A-2.25-6-T

Fig. S8.  XPS spectra (a) and C 1s high-resolution spectra (b) of A-2.25, A-2.25-6, A-2.25-10, A-
2.25-6-T,  O 1s high-resolution spectra of (c) A-2.25 and (d) A-2.25-10



9

Table S2 The element contents of C and O in A-2.25, A-2.25-6, A-2.25-10, and 
A-2.25-6-T samples

Atomic %Samples C O
A-2.25 92.97 7.03

A-2.25-6 93.29 6.71
A-2.25-10 93.07 6.93
A-2.25-6-T 92.98 7.02

Fig. S9. CV curves at a scan rate of 0.2 mV s-1 (a, c, e, g) and galvanostatic discharge/charge
profiles at 0.03 A g-1 (b, d, f, h) of A-2.25, A-2.25-6, A-2.25-10, A-2.25-6-T
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Table S3 Electrochemical performance of almond shell derived-hard carbon

Samples Charge capacity
(mAh g-1)

ICE
(%)

Retention ratio after 
500 cycles(%)

A-2.25 276.8 79.83 81.41
A-2.25-6 319.5 82.57 87.43
A-2.25-10 292.8 83.18 87.24
A-2.25-6-T 342.4 87.19 87.03

Fig. S10. (a-c) CV curves at various scan rates from 0.2 to 3.0 mV s-1 and (d-f) CV curves with a 
calculated capacitive contribution at 3 mV s-1 of A-2.25, A-2.25-6, and A-2.25-10
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Fig. S11. Na+ diffusion coefficients calculated from the GITT potential profiles of (a-b) A-2.25, 
(c-d) A-2.25-6, and (e-f) A-2.25-10 
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Fig. S12.  (a) Galvanostatic discharge/charge profiles of NVP and A-2.25-6-T in half cells, 
electrochemical performance characterization of the NVP//A-2.25-6-T full cell: (b) initial 

galvanostatic discharge/charge profiles at 20 mA g-1, (c) rate performance, (d) energy density and 
power density at various current densities.

The power density and energy density of the full cells were calculated by following equations[2]:

P = (ΔV  I) / m
ΔV = (Vmax + Vmin) / 2
E = (P  t) / 3600

where I is the discharge current, t is the discharge time, m is the total loading mass of active 
materials, Vmax and Vmin are the voltage at the beginning and end of discharge, respectively.
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Table S4 Comparison of electrochemical performance of hard carbon anode in this work with 
reported related materials for sodium-ion batteries

Samples Raw materials
Reversible
capacity

(mAh g-1)

ICE
(%)

Rate 
capacity 

(mAh g-1)
Ref.

Hard carbon almond shell 342.4, 0.01-2 V,
30 mA g-1 87.19 189.6 at 

5A g-1
This 
work

Bamboo-
derived hard 

carbon

bamboo 
powder

348.5, 0-2.5 V, 30 
mA g-1 84.1 206.5 at 

2 A g-1 [3]

Agar-
derived 
porous 
carbon

agar and phytic 
acid

439, 0.01-3 V, 50 
mA g-1 30.98 140 at 

5A g-1 [4]

Chitosan-
derived hard 

carbon
chitosan 317.4, 0.01-3 V, 500 

mA g-1 70.59 238.9 at 
5A g-1 [5]

Bio-spore-
derived hard 

carbon

spores of 
Calvatia 
Gigantea

438.5, 0-3 V, 25 mA 
g-1 90.23 254.8 at 

5A g-1 [6]

Balloon-like 
porous hard 

carbon
puffball 205.05, 0.01-3 V, 

100 mA g-1 57.6
102.12 
at 10 A 

g-1
[7]

N, O, S tri-
doping 

turbostratic 
carbon

4, 6-diamino-
2(1h)-

pyrimidinethio
ne

321.5, 0.01-3 V, 100 
mA g-1 55.53 175.5 at 

5A g-1 [8]

N-doped 
carbon 

nanosheets

carboxymethyl 
cellulose and 

g-C3N4

304.7, 0-2.5 V, 50 
mA g-1 79.52 197.6 at 

5A g-1 [9]

Porous 
carbon 

sphere@voi
d@carbon

anhydrous 
glucose

216.7, 0.01-3 V, 100 
mA g-1 85.3 140.3 at 

10 A g-1 [10]
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