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S1: Sound Velocity Measurement Details:

The mean sound velocity (m) was estimated from the longitudinal (vl) and transverse (vt) sound 

velocities via the formula: 
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The Grüneisen parameter ( ) was estimated using the formula: 𝛾𝐺

. ………. (2)
𝛾𝐺 =  
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Where, p is the Poisson ratio which is calculated from vl and vt through:
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The Debye temperature (𝛩𝐷) was calculated from the mean sound velocity (𝑣m) using: 

 , ………. (4)
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where h , N and Vu are the Planck’s constant, number of atoms in a unit cell and unit-cell 

volume.1

Further, the bulk (B) and shear modulus (G) were determined using the  ,  and density (ρ) 𝑣𝑙 𝑣𝑡

of the material using the equation:
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S2: Lorenz number Calculations:

The Lorenz number (L) is calculated by fitting the reduced chemical potential (η), which is 

derived from the temperature dependent Seebeck coefficient, single parabolic band and 

acoustic phonon scattering,2 via:
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Here, , in which  being the Boltzmann’s constant and the Fermi integral, ( ) 
𝜂 =  ( 𝐸𝐹

𝑘𝐵𝑇) 𝑘𝐵 𝐹𝑛 𝜂

is denoted by: . ………. (11)
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Fig. S1 Rietveld refined XRD pattern of Cu12Sb4S13 using Fullprof Suite software.
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Fig. S2 The Cu(12e) atoms exhibit a large atomic displacement parameter (ADP: Ueq), with 

temperatures, in comparison with other atoms (Sb, S) and Cu(12d), for (a) without U 

(Coulombic interaction term) and (b) with U.

Fig. S3 The atom-projected phonon dispersion relation without U (Coulombic interaction term) 

for Cu12Sb4S13.
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Fig. S4 The atom-projected phonon dispersion relation with U (Coulombic interaction term) 

for Cu12Sb4S13.

Fig. S5 The low energy acoustic and optical phonon interactions shown in green circle (a) 

without U parameter, and the purple rectangular box at Γ-point represents the negative modes 

frequencies, (b) with U parameter, for Cu12Sb4S13, respectively.
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Fig. S6 The eigen vector visualization of imaginary (unstable) vibrational modes, which 

strongly involves the dominating Cu(12e) atom vibrations (shown in purple arrow). 

Fig. S7 Temperature dependent (a) 3-100 K, (b) 150-350 K, and (c) 400-550 K in the low-

frequency (~15-75 cm-1) Raman spectra fitting through Lorentzian function.
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Fig. S8 Lorentzian function fitting of Raman active mode at 3 K, where the low frequency 

modes are clearly visible for Cu12Sb4S13.

Fig. S9 The eigen vector visualization for low-frequency Raman active modes, which strongly 

involves the dominating vibrations of Cu(12e) atoms.
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Fig. S10 The eigen vector visualization of highest intensive Raman active modes, which 

involves the dominating vibrations of Cu(12d), Sb(8c) and S(24g) atoms.

Fig. S11 Temperature dependent (3 – 550 K) phonon lifetime ( ) of prominent vibrational 𝜏𝑖

mode of Cu12Sb4S13.
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Fig. S12 The temperature dependent carrier concentration ( ), plot for Cu12Sb4S13.𝑛𝐻

Fig. S13 The (a) electronic band structure and (b) density of states for Cu12Sb4S13 without U 

(Columbic interaction) term.
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Fig. S14 The (a) electronic band structure and (b) density of states for Cu12Sb4S13 with U 

(Columbic interaction) term.

Fig. S15 The convergence of valance band near the Fermi energy (Ef) level.
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Fig. S16 Temperature dependence diffusivity (D) for Cu12Sb4S13.

Fig. S17 The estimated Lorenz number (L) for Cu12Sb4S13.

Table S1. The Rietveld refined crystal structure parameters for Cu12Sb4S13.

a = b = c
(Å) Cu(12e) Cu(12d) Sb(8c) S(2a) S(24g) V(Å3)
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10.3318
x = 0.25
y = 0.50
z = 0.00

x = 0.2108
y = 0.00
z = 0.00

x = 0.2665
y = 0.2665
z = 0.2665

x = 0.00
y = 0.00
z = 0.00

x = 0.1111
y = 0.1111
z = 0.3642

1102.8
9

Table S2. The fitting parameters obtained from the heat capacity (1D-3E model) data.

Fitting parameters 

(1D-3E) model
Cu12Sb4S13

γ (J mol-1 K-2) ~ 0.085 ± 0.005

β (J mol-1 K-4) ~ 4.28E-4 ± 1.9E-5

A (J mol-1 K-1) ~ 11.3 ± 0.4

 (K)Θ𝐸1 ~ 24.7 ± 0.3

B (J mol-1 K-1) ~ 98.0 ± 3.5

 (K) Θ𝐸2 ~ 64.3 ± 0.8

C (J mol-1 K-1) ~ 238.8 ± 2.5

 (K) Θ𝐸3 ~ 123.7 ± 1.4

R2 (Adj. R-Square) ~0.9999

χ 2 (Reduced Chi-Square) 1.03E-4

References:

1. P. Acharyya, T. Ghosh, K. Pal, K. S. Rana, M. Dutta, D. Swain, M. Etter, A. Soni, U. V. 

Waghmare and K. Biswas, Nature Communications, 2022, 13, 5053.

2. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. 

Kanatzidis, Nature, 2012, 489, 414-418.


