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1. Supplementary note: Formula derivation

Second-order nonlinear photoconductivity in the velocity gauge and length gauge. Under 

intense light irradiation, homogeneous systems with spatial inversion symmetry (P-symmetry) 

breaking exhibit even-order nonlinear optical responses. The bulk photovoltaic effect (BPVE) is a 

second-order nonlinear optical response, capable of generating a direct current under light field. The 

photocurrent can be derived using methods such as density matrix,1,2 polarization operator,3 and 

Feynman diagrams.4 Employing the density matrix method and quadratic Kubo response theory, 

under the independent particle approximation, the expression for the second-order photocurrent 

density in the velocity gauge reads as follows:1,2,5,6
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where, a denotes the direction of the photocurrent, b and c denote the direction of the electric field 

of the incident light. This is a three-band model, the generalized photoconductivity   0; ,a
bc  

can be written as:
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In systems where P-symmetry is broken while time-reversal symmetry (T-symmetry) is 

preserved, , where  represents the complex conjugate of the velocity    *
mn mnTv v  k k *

mnv

matrix. In the numerator part of , , implying that the real and imaginary a
bc  *mn nl lm mn nl lmTv v v v v v 

parts of the numerator are odd and even functions in the k-space, respectively. Hence, when 

integrating over the entire first Brillouin zone (BZ), only the imaginary part of the numerator 

contributes to the total photoconductivity, while the real part cancels out due to its opposite values 

at  point. Under static constraints , according to the Sokhotski-Plemelj theorem k  
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Under linearly polarized light (LPL) illumination, inducing shift current (SC), the 

photoconductivity is denoted by . In LPL, there is no phase difference between the electric fields 

 and . The numerator contributes only to the imaginary part, but the photocurrent must be a bE cE

real quantity. Therefore, here we need to consider the imaginary part of the denominator:
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the first term in  ( ) is symmetric under permutations of m and n (n and l).  1 2Im D D  1 3Im D D

However, the imaginary part of the numerator  is antisymmetric under permutations, mn nl lmv v v

. Therefore, the first term cancels out and can be neglected. Hence, we focus on the mn nmv v 

imaginary part of the denominator's second term, yielding the  under the velocity gauge as:a
bc
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The relationship between the Berry connection  and the velocity matrix  is as follows:mlr mlv
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bands m and l,  is the velocity difference. By utilizing the Berry connection and sum a a a
lm ll mmv v  

rule, the  can be transformed into an expression in the length gauge:a
bc
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where,  is the SC strength.;
b c abc

ml lm a mlr r I

In order to have a more intuitive understanding of the physical mechanisms of SC, by simply 

transforming the SC  can be further written in a more popular and cleaner form:a
bc
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LPL, b = c. This constitutes a two-band model, by substituting l with n in the subscript, Eq. (S12) 

equals Eq. (6) in the main text.

Under circularly polarized light (CPL) illumination, inducing injection current (IC), also 

known as circular current or ballistic current, the photoconductivity is denoted by . For CPL, the 

phase difference between the electric fields  and  is i. While only the imaginary part bE cE

contributes to the photoconductivity in the numerator, the current must be a real. Therefore, we need 

to consider the real part of the denominator:
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the contribution of the first term in  ( ) is much smaller than that of the second  1 2Re D D  1 3Re D D

term. Hence, we neglect the first term here and only consider the second term. In the second term,
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In CPL, the b and c directions are permutation antisymmetric, , thus bc cb 

. The  can be transformed into an expression under the  1 1 ,
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where,  is the velocity difference,  is the Berry a a a
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curvature,  is the intraband velocity. Apart from a prefactor τ, replacing l with n in the subscript, a
llv

Eq. (S18) equals Eq. (7) in the main text.

In fact, the photoconductivity under velocity gauge and length gauge is equal because they deal 

with the same physical effects. The difference lies in that Eq. (S2) can be used to handle cases where 

T-symmetry is either preserved or broken, while Eq. (S12) and Eq. (S18) require the system to 

maintain T-symmetry. In systems preserving T-symmetry, the symmetric real part and asymmetric 

imaginary part in Eq. (S2) respectively correspond to the photoconductivity under LPL and CPL 

illumination.
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2. Supplementary tables

Table S1. The lattice parameters (Å) of CIPS, CIPSe, and CIPTe, as well as the energy 

differences (meV) between the FE, PE, and AFE phases. The GS denotes the ground state.

Table S2. The space group and point group of the FE, PE, and AFE phases of CIPS. The atomic 

structure is used to illustrate the presence of symmetry operations.
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Table S3. The C3, D3, and C1 point groups allowed second-order non-zero conductivity tensors.

Table S4. Transformation rules for the physical quantities in the SC and IC photoconductivity 

under the space inversion symmetry P and time-reversal symmetry T.
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3. Supplementary figures

Figure S1. The SC (a) and IC (b) photoconductivities of 2H-MoS2, consistent with literature 

reported results.5 The photoconductivity calculated using length gauges and velocity gauges are 

equivalent, denoted by lines and diamond markers, respectively. (c) Comparing the band 

structures of the FE1 phase of CIPS obtained from Wannier90 and DFT calculations. (d) The 

convergence test of k-point sampling density for photoconductivity calculations, confirming that 

the 641 × 641 × 1 k-mesh used in this paper has reached convergence. (e) The comparison 

between the photoconductivity calculations with and without dipole corrections shows that the 

dipole correction has a minimal effect on the photoconductivity. (f) The IC  for carrier x
zx

lifetimes (τ) of 0.1, 0.2, and 0.4 ps shows a positive correlation between the IC and the carrier 

lifetime.
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Figure S2. The phonon spectra of the the FE1, FE2, PE, and AFE phases of CIPS.

Figure S3. The projection band structure near the Fermi level for the FE1 phase of CIPS.

Figure S4. The phonon spectra of the FE phases of CIPSe (a) and CIPTe (b).
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Figure S5. The band structures of the FE1, FE2, PE, and AFE phases for CIPS (a), CIPSe (b), and 

CIPTe (c).
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Figure S6. The distribution of physical quantities in k-space. For SC , (a) SC strength, (b) y
xx

transition rate, (c) shift vector. For IC , (d) velocity, (e) velocity difference, (f) Berry x
xy

curvature. Here, we only consider the highest valence band v and the lowest conduction band c, 

which yields the same conclusions as considering all the bands.

Figure S7. The SC and IC photoconductivities of CIPS in the FE2 phase.
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Figure S8. The SC and IC photoconductivities of CIPS in the PE phase.

Figure S9. The SC and IC photoconductivities of CIPS in the AFE phase.
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Figure S10. The CI-NEB path for the (a) FE1 to FE2 and (b) FE1 to AFE phase transition in CIPS.

Figure S11. The evolution of photoconductivities during the FE1 to FE2 phase transition in CIPS. 

(a) . (b) . (c) . (d) . (e) . (f) .x
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xx z
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zz x
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Figure S12. (a) and (b) the transition rate  of  in the 03 and 07 structure. The (c) shift  x xr r k x
xx

vector  and (d) transition rate  of  in the 05/PE structure. ,x xR k  x xr r k x
xx

Figure S13. (a) and (b) the velocity difference  of  in the 03 and 07 structure. The (c)  x k x
zx

velocity difference  and (d) Berry curvature  of  in the 05/PE structure. x k  zx k x
zx
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Figure S14. The evolution of photoconductivities during the FE1 to AFE phase transition in CIPS. 

(a) . (b) . (c) . (d) .x
xx x

xy y
yz z

xx

Figure S15. The CI-NEB path for the FE1 to FE2 phase transition in CIPSe (a) and CIPTe (b).
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Figure S16. The SC and IC photoconductivities of CIPSe in the FE1, FE2, PE, and AFE phases. 

(a) . (b) . (c) . (d) . (e) . (f) .x
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zx

Figure S17. The SC and IC photoconductivities of CIPTe in the FE1, FE2, PE, and AFE phases. 
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Figure S18. The relationship between the total energy and strain for the FE1, PE, and AFE phases 

of CIPSe (a) and CIPTe (b).

Figure S19. The SC and IC photoconductivities of CIPS in the FE1 phase under in-plane biaxial 

strain. (a) . (b) . (c) . (d) .x
xx y

zx z
xx z

zz



S19

Supplementary references

(1) W. Kraut and R. von Baltz, Phys. Rev. B, 1979, 19, 1548-1554.

(2) R. Von Baltz and W. Kraut, Phys. Rev. B, 1981, 23, 5590-5596.

(3) J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B, 2000, 61, 5337-5352.

(4) D. E. Parker, T. Morimoto, J. Orenstein and J. E. Moore, Phys. Rev. B, 2019, 99, 045121.

(5) H. Xu, H. Wang, J. Zhou and J. Li, Nat. Commun., 2021, 12, 4330.

(6) X. Mu, Y. Pan and J. Zhou, npj Comput. Mater., 2021, 7, 61.

(7) A. M. Cook, B. M. Fregoso, F. De Juan, S. Coh and J. E. Moore, Nat. Commun., 2017, 8, 14176.


