Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

The catalytic oxidation of HCHO on metal single atom supported by defective

graphene: Essential roles of *d*-electrons and radius of metal atom

Quanguo Jiang,^{*1} Jiawei Yang,¹ Shihao Li,¹ Huajie Huang,¹ Zhimin Ao^{*2}

¹College of Materials Science and Engineering, Hohai University, Nanjing 210098,

China

² Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong

Provincial Key Laboratory of Wastewater Information Analysis and Early Warning,

Beijing Normal University, Zhuhai 519087, China

*Corresponding authors. E-mail address: jiangqg@hhu.edu.cn,

zhimin.ao@ bnu.edu.cn

Supplementary Results

Fig. S1 Convergence test of the cutoff energy for the total energy of HCHO/Cr-SG system.

Fig. S2 PDOS of free O_2 molecule (a) and HCHO molecule (b), where the corresponding molecular orbitals are also shown.

Fig. S3 The energy barriers E_{bar_step4} for HCHO oxidation and E_{bar_O2} for O₂ dissociation on M-SG. (b) The liner relationship between E_{bar_step4} and E_{bar_O2} .

Fig. S4 The change of number of *d* electrons (θ_d) and atomic radius (r_M) for metal atoms form Sc to Zn.

Text S1 The correction of Gibbs free energy of along LH Path3

The correction of Gibbs free energy was considered to study the effect of temperature, which is defined by the following equation:

$$G = E + E_{ZPE} - TS \tag{1}$$

where *E*, E_{ZPE} and *S* indicate the DFT calculated total energy, zero-point vibration energy and entropy, respectively. Therefore, the Gibbs free energy barrier (G_{bar}) and reaction energy (G_r) of each reaction step are calculated as:

$$G_{\rm bar} = G_{\rm TS} - G_{\rm R} \tag{2}$$

$$G_{\rm r} = G_{\rm P} - G_{\rm R} \tag{3}$$

where G_R , G_{TS} and G_P represent the Gibbs free energies of the initial state, transition state, and final state for each reaction step, respectively.

Table S1 Gibbs free energy barrier (G_{bar}) and reaction energy (ΔG) of each step along LH Path3 at 298.15 K.

	Reaction barrier		Reaction energy		
	E _{bar} (eV)	G _{bar} (eV)	E _r (eV)	G _r (eV)	
$IS \rightarrow MS_1$	0.15	0.19	-0.47	-0.27	
$MS_1 \rightarrow MS_2$	0.28	0.20	-2.70	-2.81	
$MS_2 \rightarrow MS_3$	0.10	0.14	0	-0.06	
$MS_3 \rightarrow MS_4$	0.92	0.87	0.11	0.05	
$MS_{4+O2} \rightarrow FS_2$	0.26	0.27	-1.52	-1.48	

Text S2 Comparative study of the dissociation barriers of O₂ and HCO₂ on Cr-SG

For O₂ molecule adsorbed on Cr-SG (see IS in Fig. 1), the binding energy E_{bind_O2} between O₂ and Cr-SG is calculated by using the following equation,

$$E_{bind_{O2}} = E_{O2/Cr-SG} - (E'_{Cr-SG} + E'_{O2})$$
(4)

where $E_{O2/Cr-SG}$ refers to the total energy of the O₂/Cr-SG system, while E'_{Cr-SG} and E'_{O2} refer to the total energies of the Cr-SG and O₂ in the O₂/Cr-SG configuration, respectively. For example, E'_{Cr-SG} is obtained by calculated the single point energy of Cr-SG through deleting the O₂ in the O₂/Cr-SG configuration. It is worth noting that E_{Cr-SG} and E_{O2} refer to the total energy of the freestanding Cr-SG and isolated O₂ after sufficient geometric optimization for the calculation of the adsorption energy of O₂ molecule on Cr-SG in the main text.

Therefore, the total energy of the O_2/Cr -SG system (see IS in Fig. 1) is calculated by using the following equation,

$$E_{O2/Cr-SG} = E_{bind_O2} + E'_{Cr-SG} + E'_{O2}$$
(5)

At TS state, the O-O bond is elongated to 1.825 Å (see TS in Fig. 1), where the two O atoms is labeled as OO species, and the binding energy E_{ad_OO} for OO species on Cr-SG and the total energy $E_{OO/Cr-SG}$ of the TS state are separately calculated by using the following equation,

$$E_{bind_{OO}} = E_{OO/Cr-SG} - (E''_{Cr-SG} + E_{OO})$$
 (6)

$$E_{OO/Cr-SG} = E_{bind_OO} + E''_{Cr-SG} + E_{OO}$$
⁽⁷⁾

The dissociation barrier E_{bar} for O₂ on Cr-SG is the energy difference between TS and IS states (see Fig. 1), which is calculated by using the following equation,

$$E_{\text{bar}} = E_{\text{OO/Cr-SG}} - E_{\text{O2/Cr-SG}} = (E_{\text{bind}_{\text{OO}}} - E_{\text{bind}_{\text{O2}}}) + (E''_{\text{Cr-SG}} - E'_{\text{Cr-SG}}) + (E_{\text{OO}} - E'_{\text{O2}})$$
(8)

Based on the DFT calculations, $E_{bind_{OO}} - E_{bind_{O2}} = -6.81 \text{ eV} - (-3.49 \text{ eV}) = -3.32 \text{ eV}$, $E''_{Cr-SG} - E'_{Cr-SG} = 0.40 \text{ eV}$, and $E_{OO} - E'_{O2} = 3.83 \text{ eV}$. Therefore, the energy barrier for the dissociation of O2 on Cr-SAC is composed of the following parts,

$$E_{\text{bar}} = -3.32 \text{ eV} + 0.40 \text{ eV} + 3.83 \text{ eV} = 0.91 \text{ eV}$$
 (9)

For HCO₂ species adsorbed on Cr-SG pre-adsorbed with OH group (Cr-SG-OH), the binding energy E_{bind_HCO2} between HCO₂ and Cr-SG-OH (see MS₃ in Fig. 5) is calculated by using the following equation,

$$E_{\text{bind}_\text{HCO2}} = E_{\text{HCO2/Cr-SG-OH}} - (E'_{\text{Cr-SG-OH}} + E_{\text{HCO2}})$$
(10)

Therefore, the total energy of HCO₂/Cr-SG-OH system is calculated by using the following equation,

$$E_{\text{HCO2/Cr-SG-OH}} = E_{\text{bind}_{\text{HCO2}}} + E'_{\text{Cr-SG-OH}} + E_{\text{HCO2}}$$
(11)

At TS₄₋₂ state, the H-C bond is elongated to 1.385 Å (see TS₄₋₂ in Fig. 5), and the binding energy $E_{bind_{H-CO2}}$ for H-CO₂ species on Cr-SG and the total energies of the TS₄₋₂ state are calculated by using the following equation,

$$E_{\text{bind}_{\text{H}-\text{CO2}}} = E_{\text{H}-\text{CO2/Cr-SG-OH}} - (E''_{\text{Cr}-\text{SG-OH}} + E_{\text{H}-\text{CO2}})$$
(12)

$$E_{\text{H-CO2/Cr-SG-OH}} = E_{\text{bind}_{\text{H-CO2}}} + E''_{\text{Cr-SG-OH}} + E_{\text{H-CO2}}$$
(13)

The dissociation barrier E_{bar} for HCO₂ species on Cr-SG-OH is calculated by using the following equation,

$$E_{\text{bar}} = E_{\text{H-CO2/Cr-SG-OH}} - E_{\text{HCO2/Cr-SG-OH}} = (E_{\text{bind}_{\text{H-CO2}}} - E_{\text{bind}_{\text{HCO2}}}) + (E''_{\text{Cr-SG-OH}} - E'_{\text{Cr-SG-OH}}) + (E_{\text{H-CO2}} - E_{\text{HCO2}})$$
(14)

Based on the DFT calculations, $E_{bind_{H-CO2}} - E_{bind_{HCO2}} = -2.08 \text{ eV} - (-3.01 \text{ eV}) =$

0.93 eV, $E''_{Cr-SG-OH} - E'_{Cr-SG-OH} = -0.14$ eV, and $E_{H-CO2} - E_{HCO2} = 0.13$ eV. Therefore, the

dissociation barrier E_{bar} for HCO₂ species on Cr-SG-OH is composed of the following parts,

$$E_{\text{bar}} = 0.93 \text{ eV} + (-0.14 \text{ eV}) + 0.13 \text{ eV} = 0.92 \text{ eV}$$
 (15)

Table S2 The electronegativity (*E*), number of *d* electrons (θ_d), group number (*g*),

No.	M-SG	Eм	$ heta_{d}$	g	r _M	$E_{bar_{step4}}$
1	Sc-SG	1.36	1	3	1.64	1.86
2	Ti-SG	1.54	2	4	1.47	1.70
3	V-SG	1.63	3	5	1.35	1.22
4	Cr-SG	1.66	5	6	1.29	0.92
5	Mn-SG	1.55	5	7	1.37	1.37
6	Fe-SG	1.83	6	8	1.26	1.45
7	Co-SG	1.88	7	8	1.25	1.71
8	Ni-SG	1.91	8	8	1.25	1.85
9	Cu-SG	1.90	10	1	1.28	1.98
10	Zn-SG	1.65	10	2	1.37	1.87
11	Y-SG	1.22	1	3	1.82	2.20
12	Zr-SG	1.33	2	4	1.60	1.95
13	Nb-SG	1.60	4	5	1.47	1.50
14	Mo-SG	2.16	5	6	1.40	1.12
15	Tc-SG	1.90	5	7	1.35	0.98
16	Ru-SG	2.20	7	8	1.34	1.36
17	Rh-SG	2.28	8	8	1.34	1.62
18	Pd-SG	2.20	10	8	1.37	2.31
19	Ag-SG	1.93	10	1	1.44	2.14
20	Cd-SG	1.69	10	2	1.52	2.03
21	La-SG	1.10	1	3	1.88	2.10
22	Ce-SG	1.12	1	3	1.83	2.00
23	Pr-SG	1.13	0	3	1.82	2.06
24	Hf-SG	1.30	2	4	1.59	1.98
25	Ta-SG	1.50	3	5	1.47	1.54
26	W-SG	2.36	4	6	1.41	1.25
27	Re-SG	1.90	5	7	1.37	1.03
28	Os-SG	2.20	6	8	1.35	1.55
29	Ir-SG	2.20	7	8	1.36	1.61
30	Pt-SG	2.28	9	8	1.39	2.11
31	Au-SG	2.54	10	1	1.44	2.38
32	Hg-SG	2.00	10	2	1.55	2.17
33	Ac-SG	1.10	1	3	1.90	2.12
34	Th-SG	1.30	2	3	1.80	2.11
35	Pa-SG	1.50	1	3	1.61	2.10

atomic radius ($r_{\rm M}$) for metal atoms.