Supporting Information

Structural Insights and Electronic State Analysis of PtNi Nanowire Catalysts by *operando* High-Energy Resolution Fluorescence Detection X-ray Absorption Spectroscopy

Weijie Cao, ^a Neha Thakur, ^{*a} Mukesh Kumar, ^a Tomoki Uchiyama, ^a Yunfei Gao, ^a Satoshi Tominaka, ^b Akihiko Machida, ^c Toshiki Watanabe, ^a Ryota Sato, ^d Toshiharu Teranishi, ^d Masashi Matsumoto, ^e Hideto Imai, ^e Yoshiharu Sakurai, ^f Yoshiharu Uchimoto ^a

^a Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsucho, Sakyo-ku, Kyoto 606-8501, Japan
^b International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
^c Synchrotron Radiation Research Center, National Institutes for Quantum and Radiological Science and Technology, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
^d Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
^e Fuel Cell Cutting-Edge Research Center Technology Research Association, Aomi, Koto, Tokyo, 135-0064 Japan

^f Japan Synchrotron Radiation Research Institute (JASRI), Koto, Sayo, Hyogo, 679-5198, Japan

*Corresponding author: thakur.neha.2x@kyoto-u.ac.jp

Fig. S1. TEM image of Pt-NW catalyst synthesized using (a) 0 mg, (b) 2.5 mg and (c) 6.4 mg Ni(acac)₂.

Fig. S2. STEM-EDS element mapping spectrum of Pt-NW/C.

Fig. S3. (a-d) TEM images, (e) length distribution and (f) diameter distribution of Pt-NW/C.

Fig. S4. STEM image and EDS element mapping for PtNi-NW/C before $\rm H_2/N_2$ annealing treatment.

Fig. S5. HRTEM and FFT patterns of PtNi-NW/C without annealing treatment.

Fig. S6. TEM image of PtNi-NW/C (a) before and after (b) 250 °C, (c) 300 °C, (d) 350 °C, (e) 400 °C and (f) 450 °C H_2/N_2 annealing treatment.

Fig. S7. (a-d) TEM images, (e) length distribution and (f) diameter distribution of PtNi-NW/C.

Fig. S8. STEM-EELS mappings for PtNi-NW/C after 300°C annealing treatment.

Fig. S9. (a) STEM-EDS element mapping spectrum, and (b) line scanning profiles of PtNi-NW/C.

Fig. S10. HRTEM and FFT patterns of PtNi-NW/C in (a) Pt-rich layer and (b) PtNi alloy core.

Fig. S11. XRD pattern for Pt-NW/C, PtNi-NW/C before and after 400°C annealing treatments. The yellow bar is standard Ni and the gray bar is standard Pt.

Fig. S12. XPS spectra for the (a) Pt-NW/C, (b) PtNi-NW/C and (c) Pt/C of Pt 4f and (d) Ni 2p.

Fig. S13. XPS survey spectra of PtNi-NW/C.

Fig. S14. CV curves of (a) Pt-NW/C, (b) PtNi-NW/C before annealing and (c) PtNi-NW/C after 400 °C treatment at a scanning rate for 100 mV/s.

Fig. S15. LSV curves and Koutecky-Levich plots for (a, d) Pt/C, (b, e) Pt-NW/C, and (c, f) PtNi-NW/C in O₂-saturated 0.1 M HClO₄ solution at different rotating speed.

Fig. S16. (a) CV and (b) LSV curves of PtNi-NW/C catalyst with different Ni content.

Fig. S17. (a) Pt L₃-edge XANES spectra and (b) FT-EXAFS spectra of PtNi-NW/C with different Ni content.

Fig. S18. Tafel plots of specific activity.

Fig. S19. TEM images of (a,b) Pt-NW/C and (c,d) PtNi-NW/C catalyst after 10K ADT cycles.

Fig. S20. STEM image and EDS element mapping for PtNi-NW/C catalyst after 10K ADT cycles.

Fig. S21. STEM image and EDS element mapping for unannealed PtNi-NW/C catalyst after 10K ADT cycles.

Fig. S22. Reduction current profiles of oxide species on (a) Pt/C and (b) Pt-NW/C and (c) PtNi-NW/C from 0.50 to 1.0 V *vs.* RHE.

Fig. S23. (a, b, c) The difference spectra of Fig. 5 at various potentials, the spectrum tested at 0.5 V was used as a reference spectrum. (d) The catalyst oxidation process reported by Imai et al.¹

Fig. S24. Pt L₃-edge XANES spectra of (a) Pt/C, (b) Pt-NW/C and (c) PtNi-NW/C.

Fig. S25. Pt L₂-edge XANES spectra of (a) Pt-NW/C, (b) PtNi-NW/C.

Fig. S26. XANES spectra showing the determination of the intensity on white line ($\Delta\mu$) for Pt/C.

Fig. S27. The FT-EXAFS spectra for (a) Pt/C, (b) Pt-NW/C and (c) PtNi-NW/C.

Fig. S28. WT for (a) Pt/C, (b) Pt-NW/C and (c) PtNi-NW/C at different potential.

Lattice constants in / Å	XRD main	XRD sub	PDF main	PDF sub
Pt -NW/C	3.91834(13)	4.109(3)	3.92152(19)	none

Table S1. Fitting model and the extracted parameters of Pt nanowire

Pt FCC

Note:

We need this additional fcc phase just to improve curve fitting. Because the nanowires exhibit anisotropic peak shapes, the expanded lattice obtained from the fitting may be imaginary.

Samples were sealed in Cole-Parmer polyimide capillaries (inner diameter: 1.0 mm). Intensity values from blank capillary measurements were subtracted from the sample data. Polarization, oblique incidence, and area corrections were applied, and the data were converted into 1D total scattering using the PIXIA program, excluding the direct beam stop region. Scattering from carbon supports was assumed to be negligible, and total scattering data from the metal nanoparticles were obtained by subtracting the Vulcan XC carbon pattern from the overall catalyst sample.

PtNi-NW/C	C1s	O1s	Pt4f	Ni2p
Mole ratio (Normalize to C)	1.00	0.02	0.004	0.01
Elemental content ratio (mole%)	96.7	1.6	0.4	1.3
Binding Energy / eV	284.6	532.2	$4f_{7/2}$	2p _{3/2}
	284.0	552.2	71.5	852.9
Pt-NW/C	C1s	O1s	Pt4f	
Pt-NW/C Mole ratio (Normalize to C)	C1s	O1s 0.02	Pt4f 0.01	
Pt-NW/C Mole ratio (Normalize to C) Elemental content ratio (mole%)	C1s 1.00 96.7	01s 0.02 1.6	Pt4f 0.01 1.8	
Pt-NW/C Mole ratio (Normalize to C) Elemental content ratio (mole%)	C1s 1.00 96.7	0.02 1.6	Pt4f 0.01 1.8 4f _{7/2}	

Table S2. XPS analysis result of PtNi-NW/C and Pt-NW/C.

	ВСТ	Pt FCC	Ni FCC
a axis / Å	2.62603	3.78991	3.55550
C axis / Å	3.61090	-	-
Component wt%	12.96	74.58	12.45
Pt-Pt / Å	2.62603	2.67987	-

Table S3. Fitting model and the extracted parameters of PtNi nanowire

PtNi BCT

Pt FCC

Ni FCC

	Specific activity (mA cm ⁻²)		Mass activ	vity (A g^{-1})
Temperatur e	Pt ₄₀ Ni ₆₀	Pt ₂₅ Ni ₇₅	Pt ₄₀ Ni ₆₀	Pt ₂₅ Ni ₇₅
No treat	850	928	515	529
250°C	1264	1375	709	821
400°C	1811	2074	1050	1366

Table S4. ORR activity of PtNi-NW/C with different Ni content.

Mass Activity (MA): The MA values were calculated based on the kinetic current $\binom{l_k}{k}$ obtained at 0.9 V vs. RHE from the Koutecky-Levich limiting current equation. The kinetic current was normalized to the mass of Pt loaded on the electrode.

$$\frac{1}{i} = \frac{1}{i_k} + \frac{1}{i_d}$$

Specific Activity (SA): The SA values were determined by normalizing the kinetic current to the electrochemical surface area (ECSA) of the catalysts, which was calculated from the hydrogen underpotential deposition (HUPD) region in the cyclic voltammograms. The ECSA was calculated using the formula:

$$ECSA = \frac{Q_{Hupd}}{0.21 \ mC \ cm^{-2}}$$

where Q_{Hupd} is the charge obtained by integrating the hydrogen adsorption peak in the cyclic voltammogram, and 0.21 mC cm⁻² is the charge required to oxidize a monolayer of hydrogen on Pt.

Table S5. The corresponding R space curve fitting results of Pt L₃-edge for the Pt/C catalysts varying different potential. Fitting details: S_0^2 was fixed at 0.90, which was obtained by fitting the reference foils. Fits were undergone in R-space for $1.5 \le R \le 3.3$ Å, and the k1,2,3 weighting for $\Delta k = 3 - 11$ Å⁻¹. The path of the Pt-Pt is from the crystal structure of FCC Pt phase (*fm-3m*).

	Bond	I ength/Å	CN	ΛE/eV	Debye-Waller	R-factor
	Dond	Lengul/A	CN		factor	K-Iactor
0.5 V	Pt-Pt	2.751(2)	9.0(2)	9.516	0.005	1.3%
0.6 V	Pt-Pt	2.750(8)	9.9(2)	10.08	0.007	1.8%
0.7 V	Pt-Pt	2.752(5)	9.5(6)	9.221	0.007	1.1%
0.8 V	Pt-Pt	2.749(9)	8.1(6)	11.50	0.005	0.70/
	Pt-O	2.109(2)	1.0(5)	1.098	0.001	0./%
0.9 V	Pt-Pt	2.757(5)	8.0(3)	10.66	0.005	1.00/
	Pt-O	2.110(4)	1.5(5)	7.088	0.008	1.9%
1.0 V	Pt-Pt	2.763(11)	8.2(8)	10.22	0.007	2.20/
	Pt-O	2.109(3)	1.6(9)	9.925	0.008	2.3%
1.1 V	Pt-Pt	2.825(13)	5.1(9)	14.88	0.004	2 00 (
	Pt-O	2.122(5)	4.1(3)	10.40	0.012	2.0%

	Bond	Length/Å	CN	ΔE/eV	Debye–Waller factor	R-factor
0.5 V	Pt-Pt	2.746(3)	9.1(1)	8.794	0.008	0.2%
0.6 V	Pt-Pt	2.748(5)	8.9(2)	9.357	0.007	0.7%
0.7 V	Pt-Pt	2.746(5)	9.0(6)	11.32	0.006	1.5%
0.8 V	Pt-Pt	2.749(9)	9.0(5)	8.886	0.007	2.0%
0.9 V	Pt-Pt	2.752(9)	8.8(9)	10.42	0.007	0.00/
	Pt-O	2.110(4)	0.9(5)	-8.333	0.011	0.9%
1.0 V	Pt-Pt	2.748(9)	8.2(5)	-3.547	0.008	1.00/
	Pt-O	2.109(3)	1.1(5)	9.942	0.007	1.9%
1.1 V	Pt-Pt	2.779(7)	8.0(8)	7.905	0.009	2 20/
	Pt-O	2.150(4)	1.6(9)	18.85	0.005	2.3%
1.2 V	Pt-Pt	2.875(12)	3.5(9)	3.345	0.002	0 10 (
	Pt-O	2.159(4)	5.1(3)	2.811	0.025	2.1%

Table S6. The corresponding R space curve fitting results of Pt L_3 -edge for the Pt-NW/C catalysts varying different potential.

Table S7. The corresponding R space curve fitting results of Pt L₃-edge for the PtNi-NW/C catalysts varying different potential. The corresponding R space curve fitting results of Pt L₃-edge for the Pt/C catalysts varying different potential. Fitting details: S_0^2 was fixed at 0.90, which was obtained by fitting the reference foils. Fits were undergone in R-space for $1.5 \le R \le 3.3$ Å, and the k1,2,3 weighting for $\Delta k = 3 - 11$ Å⁻¹. The path of the Pt-Pt and Pt-Ni are from the crystal structure of BCT PtNi phase (*P4-mmm*) for core structure and FCC Pt phase (*fm-3m*) for Pt layer.

	Bond	Length/Å	CN	ΔE/eV	Debye–Waller factor	R-factor
0.5 V	Pt-Pt	2.677(8)	3.3(7)	2.421	0.001	0.20/
	Pt-Ni	2.639(9)	6.5(3)	7.235	0.011	0.2%
0.7 V	Pt-Pt	2.676(6)	3.3(2)	-2.419	0.008	2.00/
	Pt-Ni	2.620(9)	6.3(5)	2.149	0.011	2.0%
0.9 V	Pt-Pt	2.679(2)	3.5(5)	2.752	0.004	0.20/
	Pt-Ni	2.640(13)	6.0(5)	7.572	0.013	0.5%
1.1 V	Pt-Pt	2.682(10)	3.1(3)	5.647	0.001	1 40/
	Pt-Ni	2.651(11)	5.7(2)	5.816	0.012	1.4%
	Pt-O	2.110(4)	0.1(3)	-9.320	0.017	
1.2 V	Pt-Pt	2.686(7)	2.7(8)	-0.377	0.007	1 00/
	Pt-Ni	2.642(3)	3.5(3)	12.02	0.002	1.9%
	Pt-O	2.150(4)	1.6(3)	25.31	0.004	
1.4 V	Pt-Pt	2.711(12)	1.7(9)	17.56	0.002	
	Pt-Ni	2.647(9)	2.5(7)	6.513	0.011	0.9%
	Pt-O	2.141(4)	2.0(3)	23.96	0.012	

Catalysts	Mass activity at 0.9 V (A	Specific activity at 0.9 V (mA cm _{Pt} ⁻²)	Degradation of mass activity after ADT test		References
	mg_{Pt}^{-1})		Loss (%)	Cycles	-
IMC-PtFeMo/C nanowire	2.56	5.41	11	10k	Nano Energy, 2024, 129 , 110079
PtNi/C nanowire	0.28	0.25	0	10k	ACS Catal., 2024, 14, 1750–1758
PtNi NW/C	1.85	1.64	23.6	10k	Chin. Chem. Lett.,
PtNiGa NW/C	2.37	1.89	12.8	10k	2024, 35 , 108445
Pt2Ni1/C nanowire	0.095	0.24	18.9	3k	Int. J. Hydrogen Energy., 2024, 51 , 1487
$\frac{\text{L1}_{2}-\text{Pt}_{3}\text{Co/C}}{\text{nanowire}}$	0.31	2.47	6.2	5k	Adv. Funct. Mater.,
A1-Pt ₃ Co/C nanowire	0.12	1.1	8.3	5k	2024, 34 , 2311618.
O-PtCu/C nanowire	0.48	0.47	4.2	10k	Nano Res., 2024, 17 , 7001
Waved Pt nanowire/C	0.71	1.55	Na	Na	Appl. Catal. B:
Regular Pt nanowire/C	0.56	0.99	Na	Na	122268
Pt@Pt-skin Pt ₃ Ni nanowire	6.69	8.42	2.9	50k	<i>Nat. Commun.</i> , 2023, 14 , 1518
Pt–Ni Nanochains	1.78	3.11	35.9	10k	Adv. Mater., 2023,
Pt–Ni Nanowires	1.25	2.92	58.7	10k	35 , 2206508
Pt-Ni Bunched- Nanocages	1.95	3.55	17.4	20k	<i>Adv. Energy Mater.</i> 2023, 13 , 2204257.

Table S8: Acidic ORR activity and durability of PtNi-NW/C and state-of-the-art Pt-based

 nanocatalysts from recent years-published work.

PtNiCo branched	1.03	2.75	13	5k	
nanocages					J. Mater. Chem. A,
PtNi branched	0.37	1.39	NA	NA	2021, 9 , 23444
Dt. Co					Nano Latt. 2020. 20
nanoframes/C	0.4	0.8	15.0	10k	1974
fct -PtFeIr	• • •	• 40		4.01	
nanowires/C	2.03	2.40	11.1	10k	Angew. Chem. 2022,
fcc -PtFeIr	1 1 1	1 20	21.6	1.01-	134 , e202113278
nanowires/C	1.11	1.29	31.0	10K	
Pt _{4.31} Ga	1.90	2 20	15.0	201-	J. Am. Chem. Soc.
nanowires/C	1.89	3.28	15.8	30K	2019, 141, 18083
Jagged Pt	12.6	11.5	10	61-	<i>Science</i> , 2016,
nanowires/C	13.0	11.5	12	OK	354 ,1414
Pt ₃ Ni	0.546	0.0	(2	501-	ACS Catal., 2019, 9,
nanowires/C	0.346	0.9	03	30K	4488
					ACS Appl. Mater.
L1 ₀ -PtCo/C NW	1.30	3.55	NA	10k	Interfaces, 2022, 14,
					25246
Re-PtNiGa					
tetrametallic	3.49	3.17	10.6	20k	Appl. Catal. B:
NWs/C					Environ., 2022, 303 ,
PtNi NWs/C	2.11	2.40	48.9	20k	120918
WO -PtNi					
x-(0.25) NWs/C	0.85	1.29	23.89	30k	J. Colloid Interface
DtN; NWs/C	0.33	0.60	45.04	201-	<i>Sci.</i> , 2022, 607 , 1928
Funi in ws/C	0.33	0.00	43.94	30K	
Pt/W –SnO –C	0.23	0.37	10.0	50k	J. Mater. Chem. A,
0.02 2					2024,12,10799
L1 -PtCu /C	1 33	2 63 27 1 20L	20k	J. Mater. Chem. A,	
2 3	1.55	2.05	27.1	201	2024, 12 ,10385
Pt7n_CoNC	0.45	0.55	12 0	12.8 201-	J. Mater. Chem. A,
	0.43	0.55 12.0 50	JUK	2023,11, 24371	
PtNi-NW/C	1.37	2.07	5.1	10k	This work

Reference

1. H. Imai, K. Izumi, M. Matsumoto, Y. Kubo, K. Kato and Y. Imai, *J. Am. Chem. Soc.*, 2009, **131**, 6293-6300.