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Table S1 Molecular descriptor sets and their abbreviations. 

Abbr. Illustration / weight of atoms (A) Abbr. Illustration / weight of atoms (A) 

E-C 
E-state index and cheminformatics from 

reference 2  

3DM-U 3D MoRSE, A = 1.0 

3DM-E 3D MoRSE, A=atomic Sanderson electronegativity 

morRC A = atomic covalent radius 3DM-IP 3D MoRSE, A=atomic ionization potential4 

morU A = 1.0 morIS A = atomic intrinsic state3 

morE A = atomic Sanderson electronegativity morIP A = atomic ionization potential4 

morC A = atomic charge morCa A = | atomic charge | 

morV A = atomic van der Waals volume morPI A = atomic π electrons 

morM A = atomic mass morZV A = atomic valence electrons 

morP A = atomic polarizability morZC A = (atomic valence electrons) – (atomic charge) 

 

 

 

Fig. S1 (a) The morU descriptors calculated with the scale factor of 0.01 on ten example molecules, and (b) 

scaled with MinMaxScaler. (c) The Pearson correlation coefficient of the whole descriptor set. 
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Fig. S2 (a) The morU descriptors calculated with the scale factor of 0.1 on ten example molecules, and (b) 

scaled with MinMaxScaler. (c) The Pearson correlation coefficient of the whole descriptor set. 

 

 

Fig. S3 (a) The morU descriptors calculated with the scale factor of 0.5 on ten example molecules, and (b) 

scaled with MinMaxScaler. (c) The Pearson correlation coefficient of the whole descriptor set. 
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Fig. S4 (a) The morU descriptors calculated with the scale factor of 1 on ten example molecules, and (b) scaled 

with MinMaxScaler. (c) The Pearson correlation coefficient of the whole descriptor set. 

 

 

Fig. S5 (a) The morU descriptors calculated with the scale factor of 5 on ten example molecules, and (b) scaled 

with MinMaxScaler. (c) The Pearson correlation coefficient of the whole descriptor set. 
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Fig. S6 Standard 3D-MoRSE radial basis function 𝑓(𝑠, 𝑟𝑖𝑗) at different scattering parameters.1 

 

 

Table S2 Prediction R2, RMSE, and r for all molecular descriptors using ARD regression. For thirteen 

optimized 3D-MoRSE descriptors, the sL was consistently set to 0.1 and the s ranged from 0 to 14. 

Descriptor R2 RMSE (%) r Descriptor R2 RMSE (%) r 

E-C + PVK 0.72 0.73 0.87 morRC + PVK 0.69 0.77 0.85 

morU + PVK 0.74 0.70 0.87 morIS + PVK 0.70 0.76 0.86 

morE + PVK 0.76 0.68 0.89 morIP + PVK 0.75 0.69 0.88 

morC + PVK 0.69 0.76 0.85 morCa + PVK 0.69 0.76 0.85 

morV + PVK 0.69 0.77 0.85 morPI + PVK 0.69 0.77 0.85 

morM + PVK 0.66 0.80 0.84 morZV + PVK 0.69 0.76 0.85 

morP + PVK 0.70 0.76 0.85 morZC + PVK 0.69 0.76 0.85 

PVK only 0.70 0.76 0.86 CPCE only 0.67 0.80 0.84 
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Fig. S7 The RMSE of PCE prediction implemented with ARD regression and morE descriptor set with 

different dimensions that s ranges from 0 to x (𝑥 ≤ 39). The w/o means only PVK descriptors are used. 

 

Fig. S8 The RMSE of PCE prediction implemented with ARD regression and morIP descriptor set with 

different dimensions that s ranges from 0 to x (𝑥 ≤ 39). The w/o means only PVK descriptors are used. 
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Fig. S9 ML-predicted PCE versus experimental PCE with ARD regression based on (a) morU (0.1,14), (b) 

morE (0.1,14), (c) morIP (0.1,14), and (d) E-C. 
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Table S3 The optimized hyperparameters for all ML processes. 

 

M-Des Algorithm Hyperparameters 

E-C 

RF 
min_samples_leaf=1, min_samples_split=6, max_depth=7, 

n_estimators=200 

SVR C=18, gamma=0.21, epsilon=0.2 

ARD default 

LASSO alpha=0.012 

morX (0.1,14) 

(X=U, E, IP) 

RF 
min_samples_leaf=1, min_samples_split=2, max_depth=5, 

n_estimators=200 

SVR C=28, gamma=0.12, epsilon=0.74 

ARD default 

LASSO alpha=0.004 

morX (0.5,14) ARD default 

morU (0.21,38) 

RF 
min_samples_leaf=1, min_samples_split=2, max_depth=10, 

n_estimators=200 

SVR C=18, gamma=0.15, epsilon=0.15 

ARD default 

LASSO alpha=0.003 

morE (0.38,16) 

RF 
min_samples_leaf=1, min_samples_split=2, max_depth=10, 

n_estimators=200 

SVR C=27, gamma=0.30, epsilon=0.22 

ARD default 

LASSO alpha=0.002 

morIP (0.40,22) 

RF 
min_samples_leaf=1, min_samples_split=2, max_depth=10, 

n_estimators=200 

SVR C=37, gamma=0.03, epsilon=0.13 

ARD default 

LASSO alpha=0.003 
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Fig. S10 The training and test RMSE and R2 based on (a-b) morE (0.1,14) and (c-d) E-C. The test set 

sampled by 30% from the entire database is mutually exclusive with the training set. 
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Fig. S11 (a) The RMSE of ML based on different algorithms including RF, SVR, ARD, and LASSO with the 

LOO method. (b-d) ML-predicted PCE versus experimental PCE based on the LOO method, where ARD 

regression for optimized 3D-MoRSE descriptors and SVR for E-C. 
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Fig. S12 The RMSE of PCE prediction implemented with ARD regression and morU descriptor set with sL 

from 0.01 to 0.60 and dimensions from 0 (w/o) to 40 (s = 39).  
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Fig. S13 The RMSE of PCE prediction implemented with ARD regression and morE descriptor set with sL 

from 0.01 to 0.60 and dimensions from 0 (w/o) to 40 (s = 39).  
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Fig. S14 The RMSE of PCE prediction implemented with ARD regression and morIP descriptor set with sL 

from 0.01 to 0.60 and dimensions from 0 (w/o) to 40 (s = 39).  
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Table S4 The result with RF, ARD, ARD, and LASSO algorithms for morX with the best-optimized s and sL, 

for morX(0.1,14), and for E-C. The LOO method and data split method (Test set: 30%) were utilized, 

respectively. 

 

Algorithm M-Des 
LOO Test set: 30% 

R2 RMSE (%) r R2 RMSE (%) r 

RF 

morU (0.1,14) 0.72 0.75 0.85 0.68 0.79 0.84 

morE (0.1,14) 0.74 0.73 0.86 0.68 0.77 0.85 

morIP (0.1,14) 0.73 0.74 0.85 0.68 0.78 0.85 

morU (0.21,38) 0.70 0.78 0.84 0.65 0.82 0.83 

morE (0.38,16) 0.71 0.77 0.84 0.66 0.81 0.83 

morIP (0.40,22) 0.70 0.78 0.84 0.66 0.80 0.83 

E-C 0.74 0.72 0.86 0.70 0.76 0.85 

SVR 

morU (0.1,14) 0.77 0.67 0.88 0.73 0.71 0.87 

morE (0.1,14) 0.79 0.66 0.89 0.75 0.69 0.88 

morIP (0.1,14) 0.77 0.68 0.88 0.74 0.70 0.87 

morU (0.21,38) 0.77 0.68 0.88 0.69 0.77 0.85 

morE (0.38,16) 0.79 0.65 0.89 0.72 0.73 0.86 

morIP (0.40,22) 0.78 0.66 0.89 0.73 0.72 0.87 

E-C 0.76 0.69 0.87 0.72 0.73 0.87 

ARD 

3DM-U 0.46 1.04 0.74    

3DM-E 0.24 1.24 0.69    

3DM-IP 0.18 1.28 0.68    

morU (0.1,14) 0.76 0.69 0.87 0.74 0.70 0.88 

morE (0.1,14) 0.79 0.65 0.89 0.76 0.67 0.89 

morIP (0.1,14) 0.77 0.68 0.88 0.76 0.68 0.88 

morU (0.21,38) 0.78 0.67 0.88 0.72 0.73 0.86 

morE (0.38,16) 0.80 0.63 0.90 0.76 0.67 0.89 

morIP (0.40,22) 0.82 0.61 0.90 0.74 0.70 0.87 

E-C 0.74 0.73 0.86 0.72 0.73 0.86 

LASSO 

morU (0.1,14) 0.75 0.71 0.87 0.73 0.72 0.87 

morE (0.1,14) 0.78 0.67 0.88 0.76 0.68 0.88 

morIP (0.1,14) 0.76 0.69 0.87 0.74 0.70 0.88 

morU (0.21,38) 0.77 0.69 0.88 0.72 0.72 0.87 

morE (0.38,16) 0.79 0.66 0.89 0.74 0.70 0.88 

morIP (0.40,22) 0.80 0.64 0.89 0.75 0.68 0.88 

E-C 0.74 0.73 0.86 0.72 0.74 0.86 
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Fig. S15 The SHAP summary plot for (a) morU (0.1,14), (b) morE (0.1,14), (c) morIP (0.1,14), and E-C 

descriptor sets implemented in ML with ARD regression. The SHAP values for each sample are obtained by 

one fitting in the LOO process. 

 

Fig. S16 The descriptor value of morU (0.21, s=7), morU (0.21, s=2), morU (0.21, s=4) and morU (0.21, 

s=36). As indicated by SHAP analysis, higher morU (0.21, s=7), morU (0.21, s=2), morU (0.21, s=4) and 

lower morU (0.21, s=36) should realize high PCE, the first region is shaded red. 
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Table S5 The result was predicted by adding molecular descriptors to morIP (0.40,22) and with the LOO 

method and ARD algorithm.  

 

Molecular descriptors R2 RMSE r 

SHBd, SwHBa, SHsNH3p, SHCsats +morIP(0.40,22) 0.78 0.66 0.89 

meanI, gmax, gmin, hmax, hmin+morIP(0.40,22) 0.79 0.65 0.89 

DELS, fragC+morIP(0.40,22) 0.81 0.62 0.90 

TPSA, AvgIpc, MolLogP+morIP(0.40,22) 0.81 0.62 0.90 

BCUT2D_MRHI, BCUT2D_CHGLO, 

Kappa3+morIP(0.40,22) 

0.77 0.67 0.88 

DM, RE+morIP(0.40,22) 0.81 0.61 0.90 

All in E-C+morIP(0.40,22) 0.75 0.71 0.87 

All in RDKit+morIP(0.40,22) 0.79 0.65 0.89 

 

 

Table S6 The molecular descriptors associated with passivation and the best prediction of their values by 

optimized 3D-MoRSE descriptors, when the scale factor was set from 0.1 to 0.5. ARD algorithm and LOO 

method were used. The DM and RE were calculated at the level b3lyp/Def2TZVP by Gaussian165. 

 

Molecular descriptors Illustration 3D-MoRSE R2 RMSE r 

SHBd The sums of E-states of H-bond donors morE (0.5,38) 0.60 8.14 0.78 

SwHBa The sums of E-states of weak H-bond acceptors morZV (0.5,34) 0.75 8.15 0.87 

SHsNH3p The sums of E-states of H-bonds from NH3
+ morIP (0.3,32) 0.62 0.13 0.70 

SHCsats The sums of E-states of H bonded to saturated C morRC (0.4,29) 0.87 1.13 0.93 

meanI Mean intrinsic state values I morIS (0.1,31) 0.95 0. 19 0.97 

gmax Maximum E-state morZC (0.1,30) 0.47 2.90 0.69 

gmin Minimum E-state morP (0.3,33) 0.66 1.17 0.81 

hmax Maximum H E-state morP (0.3,31) 0.80 0.17 0.89 

hmin Minimum H E-state morP (0.4,29) 0.87 0.10 0.93 

DELS The sum of all atom intrinsic state differences morZV(0.3,22) 0.94 6. 47 0.97 

fragC The complexity of the material morZC (0.3,38) 0.91 70.45 0.96 

TPSA Topological polar surface area morZC (0.4,28) 0.37 21.40 0.65 

AvgIpc 
Average information content of the characteristic 

polynomial coefficients of the adjacency matrix 
morZV (0.5,36) 0.67 0.09 0.82 

MolLogP Molecular lipid-water partition coefficient morP (0.1,35) 0.99 4.77 1.00 

BCUT2D_MRHI Crippen MR eigenvalue high morM (0.3,30) 0.65 0.90 0.83 

BCUT2D_CHGLO Gasteiger charge low morU (0.3,39) 0.91 0.08 0.95 

Kappa3 
Analysis of the third-order neighborhoods of 

atoms in the molecular graph 
morIP (0.3,18) 0.67 906.12 0.82 

DM Dipole moment morE (0.3,36) 0.20 6.18 0.46 

RE Reorganization energy morV (0.5,39) 0.69 0.56 0.83 
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Adsorption Energy and Transferred Charge Prediction 

  

Adsorption energy and work function have a certain impact on the passivation effect6, 7. Among 

passivation molecules in the dataset, 86 molecules are small enough to put on the PVK surface model 

described in our previous work, and their adsorption energies (Eads) and transferred charge (Ntran) have been 

calculated by the previous method7. Intermolecular 3D-MoRSE has shown good performance in the prediction 

of electronic couplings8. Therefore, intermolecular optimized 3D-MoRSE may have a good performance on 

the prediction of Eads and Ntran. The expression of intermolecular optimized 3D-MoRSE is 

∑ ∑ 𝐴𝑖𝐴𝑗𝑓(𝑠, 𝑟𝑖𝑗)
𝑁𝑗

𝑗=1

𝑁𝑖
𝑖=1 , where 𝑓(𝑠, 𝑟𝑖𝑗) = sin (𝑠 ∗ 𝑠𝐿 ∗ 𝑟𝑖𝑗) (𝑠 ∗ 𝑠𝐿 ∗ 𝑟𝑖𝑗)⁄ . Ni represents the number of atoms 

in molecules, Nj represents the number of atoms on the PVK surface. As for Eads, based on morRC (33,37), R2 

of 0.87 and RMSE of 0.21 have been obtained; Based on morM (13,27), R2 of 0.86 and RMSE of 0.21 have 

been obtained. Therefore, a covalent radius has a direct impact on Eads. As for Ntran, based on morM (31,11), 

R2 of 0.87 and RMSE of 0.04 have been obtained. The morM descriptor performs well on both of them, which 

may be due to morM gives Pb atom greater weight. The interaction of Pb with passivation molecules is the 

most significant7.   

 

 

Fig. S17 ARD model predicted value versus the calculated value of (a) Eads and (b) Ntran based on the LOO 

method. 
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Fig. S18 The predicted PCE versus experimental PCE based on morSel-1 with (a) 30% samples as test set, 

and (b) LOO. (c) The SHAP summary plot; The value in the bracket is 𝑠 ∗ 𝑠𝐿. 

 

Fig. S19 The predicted PCE versus experimental PCE based on morSel-2 with (a) 30% samples as test set, 

and (b) LOO. (c) The SHAP summary plot; The value in the bracket is 𝑠 ∗ 𝑠𝐿. 
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Attempt of GNN Model 

As a promising direction, graph neural networks (GNN) have been widely applied in molecular 

information extraction and property prediction.9-11 GNN extracts molecular features based on molecular 

graphs containing nodes and edges as input. Nodes represent atoms, and edges represent connectivity between 

different atoms. For comparison and exploration of the potential application of optimized 3D-MoRSE, we set 

two examples that atomic weights and atomic 3D-MoRSE values were set as node features, respectively, 

shown in Fig. S20. Torch and torch-geometric packages were utilized12. GraphSAGE (Sample and aggregate) 

model13 was used in graph convolution layers, and global mean pooling was used in the global pooling layer. 

The model was evaluated 20 times with different data splits each time (test set: 30%) and the results were 

averaged. For example A, thirteen atomic weights as shown in Table S1 were set as node features. Two graph 

convolution layers were added. The R2 reached 0.65 and RMSE reached 0.83. For example B, the node 

features were defined as ∑ 𝐴𝑖𝐴𝑗𝑓(𝑠, 𝑟𝑖𝑗)𝑁
𝑗=1   for ith atom, where 𝑓(𝑠, 𝑟𝑖𝑗) = sin (𝑠 ∗ 𝑠𝐿 ∗ 𝑟𝑖𝑗) (𝑠 ∗ 𝑠𝐿 ∗ 𝑟𝑖𝑗)⁄  

when 𝑖 ≠ 𝑗, and 𝑓(𝑠, 𝑟𝑖𝑗) = 0 when 𝑖 = 𝑗. One graph convolution layer was added. The R2 reached 0.63 

and RMSE reached 0.86. As our dataset is too small, applying GNN is relatively inappropriate and did not 

perform well. However, a potential application for optimized 3D-MoRSE was provided. 

 

 
Fig. S20 Schematic diagram of the GNN models. 
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