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Figure S1.  Optimized structures of a) NC with Sc core, b) *COH adsorbed NC with Ti core, and 

c) *COH adsorbed NC with V core. 

Text S1: Calculation for all possible combinations of nanocluster catalysts

We have considered 9 core atom dopants and 9 ligands. 

All possible combinations with 3 different ligands =  = 84, and possible adsorption sites in 𝐶9
3

between two ligands = 3.  

Combinations with two same ligands and one different ligand = 2   = 2  36 = 72, and × 𝐶9
2 ×

possible adsorption sites in between two ligands = 2.

Combinations with three same ligands = 9, and possible adsorption sites in between two ligands = 

1.

Total possible combinations = 84  9  3 + 72  9  2 + 9  9  1 = 3645× × × × × ×
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Figure S2. a) The 3D distribution plot of E*HCO with respect to core dopant metals and b) the 

frequency distribution of E*HCO. 
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Figure S3. a) The 3D distribution plot of E*COH with respect to core dopant metals and b) the 

frequency distribution of E*COH.
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Figure S4. A parallel plot showing the  with respect to the core metal, ligand combinations 𝐸 ∗ 𝐻𝐶𝑂

and their positions.
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Figure S5. A parallel plot showing the  with respect to the core metal, ligand combinations 𝐸 ∗ 𝐶𝑂𝐻

and their positions.
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Table S1: Detail description of all the features considered in the study.

Features Description

Vol1, Vol2, Vol3 Volume of three protective ligands in nanocluster
Chare1, Charge2, Charge3 Charge of the substituents of three protective ligands in 

nanocluster
Core_d_band d-band center of core doped bare nanocluster

Feature1 (For 1st ligand), Feature2 
(For 2nd ligand)

(Charge of the substituents + Unsaturation in central atom of 
the ligand)/ (P orbital radii of ligands central atom)

lig1_1st_en, lig2_1st_en Electronegativity of central atom of two ligands nearest to 
the adsorption site

lig1_others_en, lig2_others_en Avearge electronegativity of the atoms other than central 
atom involved in two ligands nearest to the adsorption site

lig1_1st_dp, lig2_1st_dp Dipole polarizability of central atom of two ligands nearest 
to the adsorption site

lig1_others_dp, lig2_others_dp Avearge dipole polarizability of the atoms other than central 
atom involved in two ligands nearest to the adsorption site

1st_P_radii, 2nd_P_radii P orbital radii of the central atom of two ligands nearest to 
the adsorption site

1st_p_val, 2nd_p_val Valence P electron of the central atom of two ligands nearest 
to the adsorption site

1st_unsaturation, 2nd_unsaturation Unsaturation in the central atom of two ligands nearest to the 
adsorption site

metal_core_EN_diff Electronegativity difference between core and shell metal 
(Cu)

metal_core_dp_diff Dipole polarizability difference between core and shell metal 
(Cu)

metal_core_d_e_diff Valence d electron difference between core and shell metal 
(Cu)

metal_core_s_e_diff Valence s electron difference between core and shell metal 
(Cu)

metal_core_IP_diff Ionization potential difference between core and shell metal 
(Cu)

metal_core_radii_diff Atomic radii difference between core and shell metal (Cu)
lig1_core_EN_diff, lig2_core_EN_diff, 

lig3_core_EN_diff
Average electronegativity difference between liagnd atoms 

and core metal for all three ligands
lig1_core_dp_diff, lig2_core_dp_diff, 

lig3_core_dp_diff
Average dipole polarizability difference between liagnd 

atoms and core metal for all three ligands
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Features Description
lig1_core_val_diff, lig2_core_val_diff, 

lig3_core_val_diff
Average valence electron difference between ligand 

atoms and core metal for all three ligands
lig1_core_IP_diff, lig2_core_IP_diff, 

lig3_core_IP_diff
Average ionization potential difference between 
ligand atoms and core metal for all three ligands

lig1_metal_EN_diff, lig2_metal_EN_diff, 
lig3_metal_EN_diff

Average electronegativity difference between 
ligand atoms and shell metal (Cu) for all three 

ligands

lig1_metal_dp_diff, lig2_metal_dp_diff, 
lig3_metal_dp_diff

Average dipole polarizability difference between 
ligand atoms and shell metal (Cu) for all three 

ligands
lig1_metal_val_diff, lig2_metal_val_diff, 

lig3_metal_val_diff
Average valence electron difference between ligand 

atoms and shell metal for all three ligands
lig1_metal_IP_diff, lig2_metal_IP_diff, 

lig3_metal_IP_diff
Average ionization potential difference between 
ligand atoms and shell metal for all three ligands
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Table S2. Best-fitted hyperparameters for all the target descriptors with their corresponding train 

and cross-validated test RMSE.

Target 
Descriptor

Best-fitted ML model with optimized 
hyperparameters

Train 
RMSE (eV)

Cross-
validation 

RMSE (eV)
E*CO RFR 

(n_estimators=100, min_samples_split=5, 
min_samples_leaf=1, max_features=’sqrt’, 

max_depth=10, bootstrap=True, 
random_state=42)

0.11 0.21

E*HCO GBR 
(n_estimators=100, min_samples_split=15, 

min_samples_leaf=5, max_depth=15, 
learning_rate=0.05)

0.05 0.30

E*COH RFR

(n_estimators=60, min_samples_split=4, 
min_samples_leaf=2, max_features='sqrt', 

max_depth=40, bootstrap=False, 
random_state=30)

0.08 0.26

Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐶𝑂𝐻 GBR
(n_estimators=100, min_samples_split=5, 

min_samples_leaf=15, max_depth=10, 
learning_rate=0.1)

0.09 0.27

Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐻𝐶𝑂 GBR
(n_estimators=100, min_samples_split=10, 

min_samples_leaf=10, max_depth=5, 
learning_rate=0.05)

0.12 0.26
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Text S2. Conformal prediction and active learning

Conformal prediction: Conformal prediction comes into the picture due to the failure of various 

uncertainty quantification methods to provide coverage guarantee of the prediction sets.1 It can be 

set of classes in case of classification problems and prediction interval in case of regression 

problems. The conformal prediction could provide mathematically rigorous guarantees and it is 

statistically valid. Conformal prediction can be of two types. One is classical conformal prediction 

i.e., transductive or full conformal prediction which uses the entire dataset, including the new data 

point, for creating prediction regions. Transductive conformal prediction doesn’t split the data and 

instead refits the model multiple times to produce a prediction region. To get the prediction set for 

a new data point, the model must be retrained for every new data point. 

Another type is inductive conformal prediction in which data is split into train and calibration data 

and all the scores rely on the calibration data. After splitting the data, it is required to choose a 

suitable ML model to use as underlying model. That can be chosen using usual process of 

hyperparameter tuning and evaluate on a test set based on error metrics such as mean absolute 

error. Then the nonconformity measure is required to define which indicates how rare an 

observation is compared to rest of the data.  With the nonconformity measure we calculate the 

nonconformity scores on the calibration data. Afterwards, a desired coverage or confidence level 

has to be chosen and after all this set up, the prediction of unknown dataset can provide various 

prediction intervals for different unknown data points. 

In this study, we have used inductive conformal prediction. To implement the conformal 

prediction, we have used nonconformist package here. It can use the underlying ML model from 

sklearn package. It can create nonconformity function using NcFactory of nonconformist package 

which can only specifically use the algorithms imported from sklearn.



S11

In this study, as we have dealt with regression problems, we have chosen absolute error as 

nonconformity function. Here, nonconformity function | where,  is ith the data point 𝛼 = |𝑦𝑖 ‒  �̂�𝑖 𝑦𝑖

in calibration data and  is the corresponding ith predicted data point.�̂�𝑖

Moreover, in nonconformist package, nonconformity functions leverage an additional underlying 

model that attempts to predict the difficulty of predicting the output of a given test pattern. In this 

study, we have KNeighborsRegressor as the additional underlying model for normalizing the 

nonconformity function. Finally, with all this set up, while we have predicted for unknown data 

sets, it provides us with different prediction intervals for different unknown data points. Here, to 

identify the most uncertain data, we have used the length of the prediction intervals as the query 

strategy which is done usually in active learning.

Table S3: Iteratively added data points (catalysts) for E*CO.

Iterations Core Ligand pair 3rd ligand E*CO (eV)
Iteration1 Cr ('SeCF3', 'SeCF3') ‘SCH2OCH3' -1.12

Iteration 1 Cr ('SeCF3', 'SeCF3') 'SeCH2OCH3' -0.68

Iteration 2 Cr ('SCF3','SeCH2OCH3') ‘SCF3' -1.04

Iteration 2 Cr ('PH2OCH3', 'SCH2OCH3') 'SeCF3' -1.37

Iteration 3 Cr ('PH2OCH3', 'SCH2OCH3') 'SeCH2OCH3' -1.31

Iteration 3 Cr ('PH2OCH3', 'SCH2OCH3') PH2OCH3' -1.21

Iteration 4 Cr ('PH2OCH3', 'SeCH2OCH3') PH2OCH3' -1.20

Iteration 4 Cr ('SCF3', 'SCH2OCH3') ‘SCF3' -1.08

Iteration 5 Mn ('SCH2OCH3', 'SCH3') 'SCH3' -1.13

Iteration 5 Mn ('SCH3', 'SeCH2OCH3') 'SCH3' -1.41
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Table S4: Train and test MAE, prediction interval coverage probability and mean prediction 

interval (MPI) for each iteration of E*CO.

Iterations Train MAE 
(eV)

Test Avg. CV MAE 
(eV) PICP (%) MPI (eV)

1 0.08 0.17 82 0.59

2 0.06 0.17 82 0.55

3 0.08 0.16 82 0.52

4 0.08 0.16 82 0.44

5 0.07 0.16 82 0.50

Table S5: Iteratively added data points (catalysts) for E*HCO.

Iterations Core Ligand pair 3rd ligand E*HCO (eV)

Iteration1 Ti ('PH2F', 'SCH2OCH3') 'PH2OCH3' -1.81

Iteration 1 Ti ('PH2F', 'PH2OCH3') 'SeCH3' -2.08

Iteration 1 Ti ('PH2F', 'SeCH3') 'PH2OCH3' -1.77

Iteration 2 Cu ('PH2F', 'PH2OCH3') 'SCH3' -2.16

Iteration 2 Ti ('PH2F', 'PH3') 'SCF3' -2.15

Iteration 2 Co ('PH2OCH3', 'PH2OCH3') 'PH2F' -1.96

Iteration 3 Ti ('PH2F', 'SCF3') 'PH3' -1.91

Iteration 3 Ti ('PH3', 'SCH2OCH3') 'PH2F' -2.01

Iteration 4 Ti ('PH2F', 'PH2OCH3') 'SeCF3' -2.07

Iteration 4 Ti ('PH3', 'SCF3') 'PH2F' -1.84

Iteration 5 Ti ('PH2F', 'SCH3') 'PH2OCH3' -1.97

Iteration 5 Ti ('PH3', 'SCH3') 'PH2F' -1.86
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Table S6: Train and test MAE, prediction interval coverage probability and MPI for each iteration 

of E*HCO.

Iterations Train 
MAE (eV)

Test Avg. 
CV MAE 

(eV)
PICP (%) MPI (eV)

1 0.04 0.24 82 0.87

2 0.05 0.21 82 0.82

3 0.05 0.20 82 0.72

4 0.05 0.22 82 0.70

5 0.05 0.21 82 0.68
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Table S7: Iteratively added data points (catalysts) for E*COH.

Iterations Core Ligand pair 3rd ligand E*COH (eV)

Iteration1 Cr ('PH2F', 'PH2F') 'PH3' -2.19

Iteration 1 Cr ('PH2F', 'PH2F') 'SCF3' -2.49

Iteration 2 Cr ('PH2F', 'SeCF3') 'PH2F' -2.41

Iteration 2 Cr ('PH2F', 'PH3') 'PH2F' -2.19

Iteration 3 Cr ('PH2OCH3', 'PH2OCH3') 'PH2F' -2.19

Iteration 3 Cu ('PH2F', 'SCH3') 'SeCH2OCH3' -3.09

Iteration 4 Cr ('PH2F', 'PH2OCH3') 'PH3' -2.18

Iteration 4 Zn ('PH3', 'SeCF3') 'PH2OCH3' -3.59

Iteration 5 Cr ('PH2F', 'SCF3') 'PH2F' -2.46

Iteration 5 Cr ('PH2F', 'PH3') 'PH2OCH3' -2.20
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Table S8: Train and test MAE, prediction interval coverage probability and MPI for each iteration 

of E*COH.

Iterations Train MAE 
(eV)

Test Avg. CV 
MAE (eV)

PICP 
(%) MPI (eV)

1 0.07 0.21 82 0.76

2 0.07 0.18 83 0.71

3 0.08 0.18 83 0.63

4 0.07 0.17 83 0.59

5 0.05 0.16 83 0.50
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Table S9: Iteratively added data points (catalysts) for .Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐻𝐶𝑂 

Iterations Core Ligand pair 3rd ligand (eΔ𝐸 ∗ 𝐶𝑂 → ∗ 𝐻𝐶𝑂 

V)
Iteration 1 Ti ('PH2F', 'SCH3') 'SCH2OCH3' 0.69

Iteration 1 Ti ('PH2F', 'SeCH3') 'SCH2OCH3' 0.70

Iteration 2 Ti ('PH2F', 'SeCH3') 'SeCH2OCH3' 0.69

Iteration 2 Fe ('SCF3', 'SCF3') 'SCH2OCH3' 1.46

Iteration 3 Fe ('SCF3', 'SCH2OCH3') 'SeCF3' 0.80

Iteration 3 Fe ('SCH2OCH3', 'SeCF3') 'SeCF3' 0.65

Iteration 4 Cu ('PH2OCH3', 
'SeCH2OCH3')

'SeCH3' 0.45

Iteration 4 Ni ('PH3', 'SCH3') 'SCH3' 0.47

Iteration 5 Fe ('SeCH2OCH3', 'SeCH3') 'SeCH3' 0.77

Iteration 5 Ni ('PH2OCH3', 
'SeCH2OCH3')

'SeCH3' 0.42

Iteration 6 Ni ('PH2OCH3', 
'SCH2OCH3')

'SCH3' -0.19

Iteration 6 Cu ('PH2OCH3', 
'SCH2OCH3')

'SCH3' -0.27
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Table S10: Train and test MAE, prediction interval coverage probability and MPI for each 

iteration of .Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐻𝐶𝑂 

Iterations Train MAE 
(eV)

Test Avg. CV MAE 
(eV) PICP (%) MPI (eV)

1 0.10 0.21 83 0.83

2 0.09 0.20 83 0.78

3 0.06 0.20 83 0.76

4 0.09 0.22 83 0.71

5 0.06 0.21 83 0.68

6 0.07 0.19 83 0.66
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Table S11: Iteratively added data points (catalysts) for .Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐶𝑂𝐻 

Iterations Core Ligand pair 3rd ligand (eΔ𝐸 ∗ 𝐶𝑂 → ∗ 𝐶𝑂𝐻 

V)
Iteration 1 Cr ('SeCH2OCH3', 'SeCH3') 'SeCH3' 2.06

Iteration 1 Cr ('PH2F', 'PH2OCH3') 'SeCF3' 2.13

Iteration 2 Zn ('PH2F', 'SeCH2OCH3') 'PH3' 1.06

Iteration 2 Cr ('PH2F', 'PH2F') 'PH2OCH3' 2.42

Iteration 3 Cr ('PH2F', 'PH2OCH3') 'SCF3' 2.13

Iteration 3 Cr ('PH2F', 'PH2OCH3') 'SCH2OCH3' 2.35

Iteration 4 Cr ('PH2OCH3', 
'SeCH2OCH3')

'PH2OCH3' 2.26

Iteration 4 Cr ('SCH3', 'SeCF3') 'SeCF3' 1.81

Iteration 5 Cr ('PH2OCH3', 
'SeCH2OCH3')

'SeCH3' 1.73

Iteration 5 Cr ('SCH2OCH3', 
'SCH2OCH3')

'SeCH2OCH3' 2.23

Iteration 6 Cr ('SCH2OCH3', 
'SeCH2OCH3')

'SeCH2OCH3' 1.67

Iteration 6 Mn ('PH2OCH3', 'PH2OCH3') 'PH2F' 1.88
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Table S12: Train and test MAE, prediction interval coverage probability and MPI for each 

iteration of .Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐶𝑂𝐻 

Iterations Train MAE 
(eV)

Test Avg. CV MAE 
(eV) PICP (%) MPI (eV)

1 0.08 0.21 84 0.79

2 0.08 0.21 84 0.78

3 0.09 0.20 84 0.67

4 0.06 0.20 84 0.67

5 0.06 0.21 84 0.73

6 0.06 0.21 84 0.73
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Figure S6. Prediction interval for predicted unknown datasets of a) E*CO, b) E*HCO and c) E*COH.

Figure S7. Prediction interval for predicted unknown datasets of a) , and b) Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐻𝐶𝑂 

.Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐶𝑂𝐻 
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Figure S8. For E*HCO prediction, SHAP plot demonstrates the a) feature importance of higher 

contributing features among others, and b) bee-swarm plot showing the distribution of feature 

values with their corresponding SHAP value for most contributing features.
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Figure S9. Comparison of NBO charge and *CO adsorption energy for two representative 

catalysts with same core metal and different ligands. Here, q1 indicates charge of the *CO 

adsorbed metal site on NC catalysts.

Figure S10. Comparison of NBO charge and *HCO adsorption energy for two representative 

catalysts with same core metal and different ligands. Here, q1 and q2 indicate charges of the two 

shell metals belonging to *HCO adsorption site on NC catalysts.
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Figure S11. For E*COH prediction, SHAP plot demonstrates the a) feature importance of higher 

contributing features among others, and b) bee-swarm plot showing the distribution of feature 

values with their corresponding SHAP value for most contributing features. 

Figure S12. Comparison of core charge of a) a Ni-based representative catalyst without adsorbate 

with its corresponding b) *COH adsorbed, c) *CO adsorbed, and d) *HCO adsorbed structures.
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Figure S13. For  prediction, SHAP plot demonstrating the a) feature importance Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐶𝑂𝐻 

of higher contributing features among others, and b) bee-swarm plot showing the distribution of 

feature values with their corresponding SHAP value for most contributing features. 

Figure S14. Charge distribution shown on surface and core metals of three selected NCs with a) 

PH2F, SCF3 and SCH2OCH3, b) PH2F, SCF3 and SeCH2OCH3 and c) PH2F, SCF3 and PH2OCH3 

as protecting ligands through NBO charge analysis.
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Table S13: Comparison of DFT calculated and ML predicted E*CO for some of the randomly 

selected NC catalysts.

Core 
Metals Ligands Adsorption site

DFT calculated 
adsorption 
energy (eV)

Predicted 
adsorption energy 

(eV)

Ni PH2OCH3, 
SCH3, SeCH3

Between SCH3 and 
SeCH3

-1.32 -1.3

Co PH2F, SCF3, 
SCH2OCH3

Between SCF3 and 
SCH2OCH3

-1.37 -1.3

Fe PH2F, PH3, 

SeCH2OCH3

Between PH3 and 
SeCH2OCH3

-1.25 -1.35

Zn SCH3, SCH3, 
SeCH2OCH3

Between SCH3 and 
SCH3

-1.31 -1.31

Cu SCH2OCH3, 
SCH3, SeCH3

Between SCH3 and 
SeCH3

-1.2 -1.36

Table S14: Comparison of DFT calculated and ML predicted E*HCO for some of the randomly 

selected NC catalysts.

Core 
Metals Ligands Adsorption site

DFT calculated 
adsorption 
energy (eV)

Predicted 
adsorption 
energy (eV)

Co PH2F, SCF3, 
SCH2OCH3

Between SCF3 and 
SCH2OCH3

-2.46 -2.35

Ni PH2OCH3, SCH3, 

SeCH3,

Between SeCH2OCH3 

and SeCH3
-2.41 -2.21

Fe PH2F, PH3, 
SeCH2OCH3,

Between PH3 and 
SeCH2OCH3

-2.19 -2.39

Mn PH2F, PH3, 
SCH2OCH3

Between PH3 and 
SCH2OCH3

-1.93 -1.84

Cu PH2OCH3, SCF3, 
SeCH3

Between SCF3 and 
SeCH3

-2.22 -2.19
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Table S15: Comparison of DFT calculated and ML predicted E*COH for some of the randomly 

selected NC catalysts.

Core 
Metals Ligands Adsorption site

DFT calculated 
adsorption 
energy (eV)

Predicted 
adsorption energy 

(eV)

Co PH2F, SCF3, 
SeCH2OCH3

Between PH2F and 
SCF3

-3.05 -3.02

Ni SCF3, SCH3, 

SeCF3

Between SCH3 and 
SeCF3

-3.39 -3.45

Fe PH2F, SCH3, 

SeCH3

Between SCH3 and 
SeCH3

-2.79 -2.72

Mn PH2F, PH3, 
SCH2OCH3

Between PH3 and 
SCH2OCH3

-2.39 -2.38

Cr PH2OCH3, PH3, 
SeCF3

Between PH3 and 
SeCF3

-2.27 -2.41

Table S16: Comparison of DFT calculated and ML predicted for some of the Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐻𝐶𝑂 

randomly selected NC catalysts.

Core 
Metals Ligands Adsorption site

DFT calculated 
reaction energy 

(eV)

Predicted 
reaction energy 

(eV)

Co PH2OCH3, SCH2OCH3, 
SCH2OCH3

Between 
PH2OCH3 and 
SCH2OCH3

-0.03 0.03

Ni SCH2OCH3, 

SeCH2OCH3, SeCH3

Between 
SeCH2OCH3 and 

SeCH3

0.54 0.49

Fe PH3, SeCH2OCH3, 

SeCH3

Between 
SeCH2OCH3 and 

SeCH3

0.54 0.62

Zn PH2F, PH3, SeCF3
Between PH2F 

and SeCF3
0.40 0.45

Cu PH2F, PH2OCH3, PH3
Between PH2F 
and PH2OCH3

0.38 0.37
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Table S17: Comparison of DFT calculated and ML predicted for some of the Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐶𝑂𝐻 

randomly selected NC catalysts.

Core 
Metals Ligands Adsorption site

DFT calculated 
reaction energy 

(eV)

Predicted 
reaction energy 

(eV)

Co
SeCF3, 

SeCH2OCH3, 
SeCH3

Between 
SeCH2OCH3 and 

SeCH3

1.54 1.44

Ni SCH3, SCH3, SeCH3
Between SCH3 

and SCH3
1.25 1.21

Fe PH3, SeCH2OCH3, 

SeCH3

Between 
SeCH2OCH3 and 

SeCH3

1.93 1.73

Mn PH2F, SCH3, 
SeCH2OCH3

Between SCH3 
and SeCH2OCH3

2.2 2.06

Cu PH2OCH3, SeCF3, 
SeCH2OCH3

Between 
PH2OCH3 and 

SeCF3

1.21 1.01



S28

Table S18: Charge at core in 3d metal doped Cu12X core shell bare nanocluster

Core Metal
Charge at core 

(q)

Ti -4.25

V -3.67

Cr -3.40

Mn -2.97

Fe -2.78

Co -2.41

Ni -2.23

Cu -1.85

Zn -1.08
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Table S19: The charge at core metal ( , ), and on the shell metal ( ) belongs to 𝑄𝑐𝑜𝑟𝑒 𝑄 '
𝑐𝑜𝑟𝑒 𝑄1,𝑄 '

1

adsorption site along with their corresponding *CO adsorption energy and reaction energy change 

for . ,  indicate charge at core metal before and after *CO adsorption ∗ 𝐶𝑂 → ∗ 𝐻𝐶𝑂 𝑄𝑐𝑜𝑟𝑒 𝑄 '
𝑐𝑜𝑟𝑒

whereas  indicate charge at shell metal before and after *CO adsorption.𝑄1,𝑄 '
1

Core 

Metal

Nearest 

Ligands

3rd 

Ligand
𝑄1 𝑄 '

1 𝑄𝑐𝑜𝑟𝑒 𝑄 '
𝑐𝑜𝑟𝑒

E*CO 

(eV)

Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐻𝐶𝑂 

(eV)

Mn
PH2F and 

PH2OCH3
SeCF3 0.38 0.02 -2.99 -2.87 -1.44 0.90

Mn
PH2F and 

SeCF3
PH2OCH3 0.37 -0.01 -2.99 -2.93 -1.28 0.91

Fe
SeCF3 and 

PH2F
PH2F 0.43 -0.09 -2.64 -2.33 -1.35 0.42

Fe
PH2F and 

PH2F
SeCF3 0.31 -0.14 -2.64 -2.49 -1.43 0.49

Co
SCF3 and 

SCH2OCH3
SeCH3 0.47 0.11 -2.55 -2.47 -1.15 0.59

Co
SCH3 and 

SeCH3
PH2OCH3 0.38 -0.06 -2.21 -2.13 -1.36 0.22

Co
SCF3 and 

SCH2OCH3
PH2F 0.32 -0.05 -2.21 -2.14 -1.37 0.27

Ni
PH2F and 

SCF3
PH3 0.36 -0.10 -2.12 -2.11 -1.46 0.15

Ni
PH3 and 

SCF3
PH2F 0.34 -0.20 -2.12 -2.09 -1.38 0.28

Ni
SCH3 and 

SeCH3
PH2OCH3 0.24 -0.15 -2.05 -2.04 -1.33 0.27
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Table S20: The charge at core metal ( , ), and on the shell metals ( , ) belongs 𝑄𝑐𝑜𝑟𝑒 𝑄 '
𝑐𝑜𝑟𝑒 𝑄1,𝑄2,𝑄 '

1 𝑄 '
2

to adsorption site along with their corresponding *HCO adsorption energy and reaction energy 

change for *  *HCO. ,   indicate charge at core metal before and after *HCO 𝐶𝑂 → 𝑄𝑐𝑜𝑟𝑒 𝑄 '
𝑐𝑜𝑟𝑒

adsorption whereas   indicate charge at shell metals before *HCO adsorption and  𝑄1,𝑄2 𝑄 '
1, 𝑄 '

2

indicate charge at shell metals after *HCO adsorption.

Core 

Metal

Nearest 

Ligands

3rd 

Ligand
𝑄1 𝑄 '

1 𝑄2 𝑄 '
2 𝑄𝑐𝑜𝑟𝑒 𝑄 '

𝑐𝑜𝑟𝑒
E*HCO 

(eV

Δ𝐸 ∗ 𝐶𝑂 → ∗ 𝐻𝐶𝑂 

(eV)

Mn
PH2F and 

PH2OCH3
SeCF3 0.38 0.27 0.39 0.39 -2.99 -2.46 -1.91 0.90

Mn
PH2F and 

SeCF3
PH2OCH3 0.40 0.36 0.37 0.24 -2.99 -2.48 -1.73 0.91

Fe
SeCF3 and 

PH2F
PH2F 0.42 0.24 0.43 0.42 -2.64 -2.77 -2.29 0.42

Fe
PH2F and 

PH2F
SeCF3 0.31 0.28 0.39 0.40 -2.64 -2.81 -2.31 0.49

Co
SCF3 and 

SCH2OCH3
SeCH3 0.47 0.33 0.47 0.41 -2.55 -2.16 -2.05 0.59

Co
SCH3 and 

SeCH3
PH2OCH3 0.38 0.26 0.33 0.37 -2.21 -2.43 -2.51 0.22

Co
SCF3 and 

SCH2OCH3
PH2F 0.37 0.37 0.32 0.28 -2.21 -2.44 -2.46 0.27

Ni
PH2F and 

SCF3
PH3 0.36 0.30 0.34 0.32 -2.12 -2.09 -2.68 0.15

Ni
PH3 and 

SCF3
PH2F 0.34 0.42 0.33 0.30 -2.12 -2.14 -2.47 0.28

Ni
SCH3 and 

SeCH3
PH2OCH3 0.28 0.23 0.24 0.33 -2.05 -2.12 -2.42 0.27
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Table S21: The total charge of CO ( ) and HCO ( ), after *CO and *HCO adsorption, 𝑄 '
𝐶𝑂 𝑄 '

𝐻𝐶𝑂

respectively.

Core 

Metal

Nearest 

Ligands

3rd 

Ligand
𝑄 '

𝐶𝑂 𝑄 '
𝐻𝐶𝑂

Mn
PH2F and 

PH2OCH3
SeCF3 0.11 -0.42

Mn
PH2F and 

SeCF3
PH2OCH3 0.15 -0.34

Fe
SeCF3 and 

PH2F
PH2F 0.15 -0.36

Fe
PH2F and 

PH2F
SeCF3 0.10 -0.44

Co
SCF3 and 

SCH2OCH3
SeCH3 0.14 -0.35

Co
SCH3 and 

SeCH3
PH2OCH3 0.12 -0.39

Co
SCF3 and 

SCH2OCH3
PH2F 0.14 -0.37

Ni
PH2F and 

SCF3
PH3 0.15 -0.40

Ni
PH3 and 

SCF3
PH2F 0.13 -0.40

Ni
SCH3 and 

SeCH3
PH2OCH3 0.11 -0.38

Data and codes

All the data and codes can be found in the following github link:

https://github.com/dips96/Conformal-active-learning

https://github.com/dips96/Conformal-active-learning
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