Supporting information for

Promoting effect of potassium on ammonia production from electrochemical nitrate reduction over nano-crystal nickel

Chunxia Zhang a, Zhengying Xue b, Yong Jiang c, Yunpu Zhai b, Changsen Zhang a, Juexiu Li d, and Panpan Liu a,*

a School of Ecology & Environment, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China

b College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China

c College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, P.R. China

d School of Smarts Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, Henan, P.R. China

*Corresponding author: Dr. Panpan Liu.

Email: liupanpan@zzu.edu.cn

Tel: +86 371 67781163

Fax: +86 371 67781163
Fig. S1 (a) LSV curves of Ni/CF with and without NO$_2^-$; (b) NH$_3$ yield rate and FE in 0.1M NO$_2^-$ at various potentials over Ni/CF.

Fig. S2 SAED pattern of Ni/CF.
Fig. S3 XPS survey spectra of Ni/CF.

Fig. S4 LSV curves of Ni/CF with and without K^+ in electrolyte omitting the NO_3^-.
Fig. S5 (a) The effects of K^+ on the NRA performance on the CF (-0.79 V vs. RHE, 0.1M NO_3^-); (b) The performance changed with the ratios of TBA concentration to NO_3^- -N concentration (0, 5, 10, 20, and 30) on the CF.

Fig. S6 The solution resistance (R_s) and charge transfer resistance (R_{ct}) of the Ni/CF catalyst by EIS.
Fig. S7 CV curves of the Ni/CF in the electrolyte containing (a) 0%, (b) 25%, (c) 50% (d) 75%, and (e) 100% K^+.

Fig. S8 In-situ Raman spectroscopy of Ni/CF in (a) 50% K^+, (b) 100% K^+ in electrolyte at various potentials (0.01 ~ -0.99 V vs. RHE).
Fig. S9 The proposed promoting mechanism of K$^+$ for NH$_3$ electrosynthesis on CF.