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Fig. S1 The pressed pellet sample (the diameter of 12 mm) of Ni/Li3N/Mo2Ga2C with 

KCl-LiCl molten salts. 

 
 
 
 
 
 
 
 
 
 



 

S3 

 
Fig. S2 XRD of the products for Ni-Li3N-Mo2Ga2C-(KCl-LiCl) after reaction at 700℃ 

and the products washed by deionized water and HCl. 
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Fig. S3 SEM mages and EDS data of Mo2Ga2C materials. 
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Fig. S4 SEM mages and EDS of A-MS-Mo2CTx. 
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Fig. S5 SEM and EDS of Mo2CTx sample etched at 48h. 
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Fig. S6 SEM and EDS of Mo2CTx sample etched at 800 ℃. 
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Fig. S7 HAADF of A-MS-Mo2CTx nanoflakes. 
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Fig. S8 Atomic percentage distribution of elements and EDX of A-MS-Mo2CTx from 

TEM-EDX. 
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Fig.S9 SEM images and  EDS of Mo2CTx produced at 1:0.33 mass ratio of Mo2Ga2C to Li3N. 
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Fig. S10 (a) XRD, (b) SEM, (c) EDS and (d) The corresponding atomic percentage 

distribution of elements of HF-Mo2CTx samples by HF etching. 
The characteristic peak of (002) for HF-Mo2CTx samples shifted lower angle (8.51°) 

from 9.93° of Mo2Ga2C, which indicates the Mo2Ga2C was effectively etched.1, 2 SEM-EDS 
shows that the elements of O, Cl and Fare evenly distributed on the surface of HF-Mo2CTx. 
Among them, the relative content of O termination reached 15.63 at. %. 
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Fig. S11 EXAFS fittings of (a) Mo foil, (b)A-MS-Mo2CTx and(c)Mo2Ga2C. 
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Fig. S12 The surface morphology and elemental distribution of by-products GaNi3 alloy 

from SEM-EDX. 
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Fig. S13 Ga 2p of Mo2Ga2C from XPS. 

The peak located at 1117.9 eV was corresponded to Ga0, which is consistent with the 
analysis in the literature.3, 4 
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Fig. S14 Products of the reaction between LiOH and Mo2Ga2C. 

Considering that Li3N is easily hydrolyzed to LiOH (Li3N+3H2O = 3LiOH + NH3), and 
LiOH is oxidizing, it will oxidize and etch Ga in Mo2Ga2C. 
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Fig. S15 The simulation models of supercell structure for adsorption calculation and 

searching TS. (a) the [110] surfaces of Mo2Ga2C supercells, (b) the searching TS model on 
the [110] surface, (c) the adsorption calculation model on the [110] surface. 

Considering that the removal of Ga atoms along the crystal surface in the [110] direction, and 
the formation of functional groups on the Mo surface in [110] directionduring alloying 
processing. 
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Fig. S16 Transition state calculations of the process of migration of interlayer Ga atoms out of 

Mo2Ga2C layer and interaction with single O atom. 
In view of the initial formation of Ga2O3, we also established the model of Ga atoms 
migration from Mo2Ga2C to form Ga-O bond with O atoms. The calculation results show that 
the reaction energy of Ga atom to form Ga-O bondin Ga2O3 with O atom through migration is 
1.8 eV. Therefore, it is reasonable to select "Mo2Ga2C + Ga2O3 and Ga defects" as transition 
states to calculate the energy barrier of the oxidation path. 
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Fig. S17 Transition state models of Ga alloying-etching process for (110) plane of 

heterostructure Mo8Ga8C4 and Ni7*. 
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Fig. S18 Transition state models of Ga redox-etching process for (110) plane of 

heterostructure Mo8Ga8C4 and Ga3O6*. 
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Fig. S19 XRD of product components of KCl-LiCl-Ni-Mo2Ga2C without Li3N, KCl-LiCl-

Mo2Ga2Cand Mo2Ga2C at 700℃ for 24 h. 
For KCl-LiCl-Ni-Mo2Ga2C system without Li3N, the products are GaNi3 and β-Mo2C. 
However, in the system of KCl-LiCl-Mo2Ga2C, the raw material Mo2Ga2C did not change 
significantly. 
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Fig. S20 The surface adsorption model and adsorption energy of single termination. 
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Fig. S21 The surface adsorption model and adsorption energy of different terminations. 
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Fig. S22 Calculation of different singlefunctional groups in a vacuum box. 
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Fig. S23 The relationship between averagesurface adsorption energy and the number of 

adsorbed functional groups from LiN,Li2O, LiCl and LiOH, respectively. 
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Fig. S24 (a) The hydrogen production rate and (b) total hydrogen productionduring reaction 
of Mo2Ga2C-Ni-Li3N and Mo2Ga2C-Ni system in KCl-LiCl molten salt. 
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Fig. S25 XRD of products of Ni-Li3N-Mo2Ga2C with and without KCl-LiCl liquid medium at 

700℃ for 24 h. 
When the contents of Li3N, Mo2Ga2C and iron ternary elements remained unchanged, and the 
LiCl-KCl eutectic salt increased from 1g to 10g, Mo2CTx products could not be obtained. This 
is probably because LiCl-KCl molten salt has a strong hygrometric property.With the increase 
of the mass of LiCl-KCl, the content of water adsorbed by LiCl-KCl will increase, and the 
amount of Li3N converted to LiOH by reaction with water will increase. A large amount of 
LiOH will not only oxidize Ga to produce Ga2O3, but also oxidize Mo2C, so no 
Mo2CTxproduct can be obtained.Without KCl-LiCl molten salt, the conversion rate of 
Mo2Ga2C to Mo2CTx products is considerably reduced. The results indicate that an optimal 
amount of LiCl-KCl is crucial for facilitating rapid migration, thereby enhancing the 
dissolution of reactants and diffusion rate of ions. 
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Fig. S26 The etching product of Mo2Ga2C in Fe-Li3N-KCl-LiCl molten salts. (a) XRD of 

samples after HCl washing, (b) SEM and (c) EDS of the corresponding initial product 
samples. 
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Fig. S27 The etching product of Mo2Ga2C in Co-Li3N-KCl-LiCl molten salt. (a) XRD of 

samples after HCl washing, (b) SEM and (c) EDS of the corresponding initial product 
samples. 
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Fig. S28 EIS and equivalent simulation circuits of A-MS-Mo2CTx, IrO2 and HF-Mo2CTx, 

respectively. 
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Fig. S29 Electrochemical capacitance measurements for (a) A-MS-Mo2CTxand (b) IrO2 by 
using cyclic voltammetry at increasing scan rates (50,100, 150, 200, 250, 300, 350, 400 and 

450 mV s-1). 
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Fig. S30 Double-layer capacitances (Cdl) of A-MS-Mo2CTxand IrO2. 
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Fig. S31 Electrocatalytic OER specific activity of A-MS-Mo2CTxand commercial IrO2 in 1.0 

M KOH electrolyte. 
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Fig. S32 Long-term stability test of A-MS-Mo2CTx in alkaline electrolyte at current density of 

500 mA cm-2. 
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Fig. S33 Overpotentials of reported MXene-based catalystsat the current densityof 10 mA 

cm-2in 1 M KOH.5-11 
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Fig. S34 Ex situ XRD characterization of Mo2CTxat 10 mA cm-2 current density and different 

timetesting process. Due to the poor stability of Mo2CTx, the testing time is limited to 2h. 
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Fig. S35 Ex situ XRD characterization of A-MS-Mo2CTxat 10 mA cm-2 current density 

duringdifferent timetesting process. 
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Fig.S36 SEM and EDS of A-MS-Mo2CTxafter long-term testing at 500 mA cm-2. 
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Fig. S37(a) Normalized XANES spectra of A-MS-Mo2CTx after long-term testing at current 

density of 500mA cm-2, (b) the fitted average valence state of Mo. 
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Fig. S38 Mo 3d XPS spectra of A-MS-Mo2CTxand HF-Mo2CTx after OER. 
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Fig. S39 Model structures of Mo-based surfaces containing different groups. 
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Fig. S40 PDOS and d-band centre of Mo-based MXene without/with different functional 

groups, (a) Mo2C, (b) Mo2CN2, (c)Mo2CO2, (d)Mo2CF2. 
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Fig. S41 Electron Localization Function (ELF) of Mo-based MXene without/with different 

functional groups, (a) Mo2C, (b) Mo2CN2, (c)Mo2CO2, (d)Mo2CF2. 
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Table S1. Relativeelement contents (at.%) of A-MS-Mo2CTx and Mo2Ga2C detected by 
XPS measurement. 

Element concentration (at. %) Mo (3d) C (1s) Ga (2p) O (1s) N (1s) 

A-MS-Mo2CTx 13.30 36.40 1.63 34.71 16.93 

Mo2Ga2C 13.00 32.90 17.56 36.56 0 
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Table S2. Deconvolution results of the high-resolution XPS spectrum of the Mo 3d 
region for Mo2Ga2C and A-MS-Mo2CTx. 

Mo2Ga2C BE (eV) FWHM (eV) Fraction(%) Assigned to 

 

Mo 3d 

227.8 (230.9) 0.62 (0.78) 28.23 Mo-C 

228.8 (232.0) 2.00 (2.00) 43.34 Mo4+ 

232.2 (235.4) 2.07 (2.00) 28.43 Mo5+ 

A-MS-Mo2CTx BE (eV) FWHM (eV) Fraction(%) Assigned to 

Mo 3d 
229.2 (232.4) 1.07 (1.15) 86.95 N-Mo-C 

232.0 (235.1) 1.42 (1.50) 13.05 Mo5+ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

S45 

Table S3. Deconvolution results of the high-resolution XPS spectrum of the C 1s region 
for A-MS-Mo2CTx. 

Mo2Ga2C BE (eV) FWHM (eV) Fraction(%) Assigned to 

C 1s 

283.3 1.22 17.45 Mo-C 

284.8 1.28 52.98 C-C 

285.7 2.0 22.19 C-O 

288.7 2.0 7.07 C=O 

A-MS-Mo2CTx BE (eV) FWHM (eV) Fraction(%) Assigned to 

C 1s 

283.5 1.22 19.26 Mo-C 

284.8 1.33 56.76 C-C 

286.5 1.67 20.29 C-N 

289.0 1.33 3.07 C=O 
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Table S4. Deconvolution results of the high-resolution XPS spectrum of the N 1s region 
for A-MS-Mo2CTx. 

A-MS-Mo2CTx BE(eV) FWHM (eV) Fraction (%) Assigned to 

N 1s 

395.4 2.58 58.34 Mo 2p 

397.2 0.98 20.46 Mo-N 

398.0 1.07 13.28 Pyridinic N 

399.2 0.93 4.26 Pyrrolic N 

400.3 1.2 3.66 Graphitic N 
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Table S5. Corresponding fit parameters for Mo foil, A-MS-Mo2CTx and Mo2Ga2C. 

Sample bond type CN* R (Å) σ2(10-3Å2)** R factor 

Mo foil 
Mo-Mo1 8 2.72±0.01 3.3±0.5 

0.002 
Mo-Mo2 6 3.15±0.01 3.1±0.7 

A-MS-Mo2CTx 

Mo-N/C 5.9±0.7 2.11±0.01 4.7±1.4 

0.012 Mo-Mo1 1.9±0.8 2.79±0.02 3.9±2.0 

Mo-Mo2 5.0±1.3 3.10±0.01 4.6±1.2 

Mo2Ga2C 

Mo-C 3.0±0.2 2.08±0.01 4.2±1.9 

0.004 Mo-Ga 3.6±0.4 2.73±0.01 4.2±0.7 

Mo-Mo 4.9±0.5 3.01±0.01 2.9±0.5 

* CN: coordination number; S0
2 was fixed to be 0.91 from Mo-foil. 

 ** σ2: Debye−Waller factors. 
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Table S6. Fitted impendence parameters of A-MS-Mo2CTx, IrO2 and HF-Mo2CTx, 
respectively. 

Samples Series resistance 
Rs (Ω) 

Charge-transfer resistance R1ct 
(Ω) 

Charge-transfer resistance R2ct 
(Ω) 

A-MS-Mo2CTx 5.89 - 8.6 

IrO2 6.52 - 58.2 

HF-Mo2CTx 4.79 11.2 101 
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Table S7 Deconvolution results of the high-resolution XPS spectrum of the Mo3d region  
before and after OER 

A-MS-Mo2CTxafter OER BE (eV) FWHM (eV) Fraction(%) Assigned to 

Mo 3d 

230.16 (233.31) 2.50 (0.89) 29.20 Tx-Mo-C 

232.43 (235.58) 1.33 (1.58) 32.60 Mo5+ 

234.22 (237.37) 1.37 (2.50) 38.20 Mo6+ 

HF-Mo2CTxafter OER BE (eV) FWHM (eV) Fraction (%) Assigned to 

Mo 3d 
232.33(235.481) 2.50 (1.49) 36.17 Mo5+ 

233.58 (236.73) 1.78(2.50) 63.83 Mo6+ 
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Table S8．The bond length of different functional group structures 

Type bond bond length (Å) 

Mo2C Mo-C 2.20 

Mo2CN2 Mo-N 2.05 

Mo2CO2 Mo-O 2.10 

Mo2CF2 Mo-F 2.30 
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