Supporting Information

Ni–P codoping engineered MoS₂ basal planes for electrocatalytic water splitting: Insights from density functional theory

Le Thanh Phuong,^a Sampath Prabhakaran,*^c Do Hwan Kim,*^{,a,b}

^aGraduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea

^bDivision of Science Education, Graduate School of Department of Energy Storage/Conversion

Engineering (BK21 Four), Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea. (orcid.org/0000-0002-2976-6873)

^cDepartment of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea (orcid.org/0000-0003-1568-7864)

*Corresponding: E-mail: spkaran10@jbnu.ac.kr, dhk201@jbnu.ac.kr.

DFT Calculations

d-band center

Norskov et al. formulated the *d*-band center theory, whereby the *d*-band center is considered a characteristic indicator of catalytic activity. This principle has been utilized to anticipate the reactivity of metals, as confirmed by Hammer and Norskov in 1995¹.

To determine the positions of the *p*- and *d*-band centers, we used the following equation:

$$\varepsilon = \frac{\int_{-\infty}^{\infty} E\rho(E)dE}{\int_{-\infty}^{\infty} \rho(E)dE},$$
(1)

where ρ is the *d*-band density, *E* is the *d*-band energy, and ρdE is the number of states.

HER

 ΔG_{H^*} is calculated using the CHE method as follows ²:

$$\Delta G_{H*} = \Delta E_{H*} + \Delta E_{ZPE} - T \Delta S_H, \tag{2}$$

where:

 $\Delta E_{\rm H^*}$ = total energy for hydrogen adsorption obtained from DFT calculations;

 ΔE_{ZPE} = change in zero-point energy of hydrogen between the adsorbed state and gas phase; and ΔS_{H} = difference in entropy between the adsorbed and gas-phase hydrogen at room temperature (T = 298.15 K).

The adsorption energy is calculated as follows:

$$\Delta E_{H*} = E_{substrate + adsorbent} - E_{substrate} - E_{adsorbent}, \tag{3}$$

where:

 $E_{substrate + adsorbent}$ = ground-state energy of the substrate adsorbent;

 $E_{substrate}$ = ground-state energy of the substrate; and

 $E_{adsorbent}$ = ground-state energy of the adsorbent.

The intermediate stage of H_{ads} , as described by the Volmer and Heyrovsky reactions, is as follows ³:

Volmer reaction for hydrogen adsorption is expressed as:

$$\mathrm{H}^{+} + \mathrm{e}^{-} + * \to \mathrm{H}^{*}. \tag{4}$$

Heyrovsky reaction for molecular hydrogen formation:

$$\mathbf{H}^* + \mathbf{H}^+ + \mathbf{e}^- \to \mathbf{H}_2 + ^*. \tag{5}$$

Tafel-expressed HER⁴:

$$2\mathrm{H}^* \to \mathrm{H}_2 + 2^*. \tag{6}$$

The HER catalytic activity is commonly assessed by analyzing the variations in the ΔG_{*H} value during the Volmer step (Equation 4), which is a crucial aspect of the HER process ^{5, 6, 7}.

OER

The oxidation performance of the anode in the water-splitting process was evaluated by examining the OER using the methodology established by Nørskov et al. ^{8,9.}

The overall OER can be summarized as follows:

$$4OH^{-} \rightarrow 2H_2O + 4e^{-} + O_2,$$
 (7)

*OH, *O, and *OOH denote the intermediate species formed upon the adsorption of oxygen species onto the active sites of the catalyst; G_1 , ΔG_2 , ΔG_3 , and ΔG_4 represent ΔG in each step.

OER involves 4e⁻ in alkaline media:

$$OH^- + * \rightarrow OH^* + e^- \qquad \Delta G_1, \qquad (8)$$

$$OH^* + OH^- \rightarrow O^* + H_2O + e^- \qquad \Delta G_2, \qquad (9)$$

$$O^* + OH^- \to OOH^* + e^- \qquad \Delta G_3, \qquad (10)$$

$$OOH^* + OH^- \rightarrow O_2 + * + H_2O + e^- \qquad \Delta G_4.$$
(11)

The ΔG in reaction steps (Eqs. (8–11)) was determined as follows:

$$\Delta G = \Delta E + \Delta_{\text{ZPE}} - T\Delta S - neU + \Delta G(\text{pH}), \qquad (12)$$

where:

 ΔE = adsorption energy with oxygen species;

 Δ_{ZPE} = changes in zero-point energy;

 $\Delta_{\rm S}$ = changes in entropy;

T = temperature under standard conditions (298.15 K, p = 1 bar);

-neU = correct bias in electron transfer with -neU as the electrode potential; and

 $\Delta G(\text{pH}) = \Delta kT \ln[\text{H}^+]$; correct free energy based on the H+ ion concentration.

Figure S1. Calculated spin-polarized total density of states for the 1T'-phase NiP@MoS₂, Ni@MoS₂, and MoS₂, with respect to the stable crystalline structures.

Figure S2. Top view of the *H intermediate adsorbed on different active sites of the 1T phase MoS₂, (a–c) Mo and (d–f) S. Green, yellow, and pink colors represent the Mo, S, and H atoms, respectively.

Figure S3. Top view of the ^{*}H intermediate adsorbed on different active sites of the 1T phase of Ni@MoS₂: (a–c) Ni, (d–f) Mo, and (g–i) S. Green, yellow, purple, and pink colors represent the Mo, S, Ni, and H atoms, respectively.

Figure S4. Top view of the ^{*}H intermediate adsorbed on different active sites of the 1T phase of NiP@MoS₂: (a–c) Ni, (d–f) Mo, (g–i) P, and, (j–l) S. Green, yellow, purple, orange, and pink colors represent the Mo, S, Ni, P, and H atoms, respectively.

Figure S5. Top view of the OER intermediates (*O,*OH, and *OOH) adsorbed on different active sites of the 1T phase of MoS₂: (a–c) Mo1, (d–f) S1, (g–i) Mo2, (j–l) S2, and (m–o) Mo3, and (p–r) S3. Green, yellow, pink, and cyan colors represent the Mo, S, H, and O atoms, respectively.

Figure S6. Top view of the OER intermediates (*O,*OH, and *OOH) adsorbed on different active sites of the 1T phase of Ni@MoS₂: (a–c) Ni1, (d–f) Mo1, and (g–i) S1. Green, yellow, purple, pink, and cyan colors represent the Mo, S, Ni, H, and O atoms, respectively.

Figure S7. Top view of the OER intermediates (*O,*OH, and *OOH) adsorbed on different active sites of the 1T phase of Ni@MoS₂: (a–c) Ni2, (d–f) Mo2, and (g–i) S2. Green, yellow, purple, pink, and cyan colors represent the Mo, S, Ni, H, and O atoms, respectively.

Figure S8. Top view of the OER intermediates (*O,*OH, and *OOH) adsorbed on different active sites of 1T phase of Ni@MoS₂: (a–c) Ni3, (d–f) Mo3, and (g–i) S3. Green, yellow, purple, orange, pink, and cyan colors represent the Mo, S, Ni, P, H, and O atoms, respectively.

Figure S9. Top view of the OER intermediates (*O,*OH, and *OOH) adsorbed on the different active sites of 1T phase of NiP@MoS₂: (a–c) Ni1, (d–f) Mo1, (g–i) P1, and (j–l) S1. Green, yellow, purple, orange, pink, and cyan colors represent the Mo, S, Ni, P, H, and O atoms, respectively.

Figure S10. Top view of the OER intermediates (*O,*OH, and *OOH) adsorbed on the different active sites of 1T phase of NiP@MoS₂: (a–c) Ni2, (d–f) Mo2, (g–i) P2, and (j–l) S2. Green, yellow, purple, orange, pink, and cyan colors represent the Mo, S, Ni, P, H, and O atoms, respectively.

Figure S11. Top view of the OER intermediates (*O,*OH, and *OOH) adsorbed on different active sites of the 1T phase of NiP@MoS₂: (a–c) Ni3, (d–f) Mo3, (g–i) P3, and (j–l) S3. Green, yellow, purple, orange, pink, and cyan colors represent the Mo, S, Ni, P, H, and O atoms, respectively.

Catalyst	Active sites		ΔG (eV)				1 OFR
			ΔG_1	$\triangle G_2$	$\triangle G_3$	$\triangle G_4$	(V)
MoS_2	Мо	1	3.112	0.682	2.565	-1.439	1.88
		2	3.022	0.222	3.404	-1.728	2.17
		3	2.632	0.612	3.405	-1.729	2.18
	S	1	2.797	0.403	2.863	-1.143	1.63
		2	2.750	1.409	1.942	-1.184	1.52
		3	3.022	0.142	3.677	-1.922	2.45
Ni@MoS ₂	Ni	1	1.613	0.829	0.657	1.820	0.59
		2	1.916	0.185	2.397	0.422	1.17
		3	2.269	0.692	1.432	0.527	1.04
	Мо	1	2.104	0.158	3.166	-0.508	1.94
		2	2.051	0.832	2.430	-0.393	1.20
		3	2.019	0.579	2.751	-0.429	1.52
		1	1.919	1.804	0.875	0.323	0.69
	S	2	1.409	2.337	1.573	-0.399	1.11
		3	1.435	2.325	1.970	-0.810	1.10
NiP@MoS2	Ni	1	2.585	1.128	2.627	-1.419	1.40
		2	1.569	1.722	3.152	-1.523	1.92
		3	2.757	0.812	2.381	-1.030	1.53
		1	2.569	0.722	3.289	-1.660	2.06
	Mo	2	2.669	1.177	2.597	-1.523	1.44
		3	2.808	0.737	2.924	-1.549	1.69
		1	1.996	1.065	2.074	-1.215	0.84
	Р	2	1.897	1.342	2.575	-0.894	1.35
		3	1.621	1.252	1.210	0.837	0.39
	S	1	2.372	1.013	2.279	-0.745	1.14
		2	2.134	1.729	1.894	-0.837	0.90
		3	1.967	1.596	2.094	-0.737	0.86

Table S1 Calculated riangle G and η of different active sites for various catalysts.

References

- 1. B. Hammer and J. K. Norskov, Nature, 1995, 376, 238-240.
- J. K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, Journal of The Electrochemical Society, 2005, 152, J23.
- 3. V. Kichigin and A. Shein, Electrochimica Acta, 2016, 201, 233-239.
- E. Skúlason, V. Tripkovic, M. E. Björketun, S. Gudmundsdóttir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jónsson and J. K. Nørskov, The Journal of Physical Chemistry C, 2010, 114, 18182-18197.
- 5. C. Ling, L. Shi, Y. Ouyang and J. Wang, Chemistry of Materials, 2016, 28, 9026-9032.
- 6. G. Gao, A. P. O'Mullane and A. Du, Acs Catalysis, 2017, 7, 494-500.
- 7. D. Er, H. Ye, N. C. Frey, H. Kumar, J. Lou and V. B. Shenoy, Nano letters, 2018, 18, 3943-3949.
- 8. N. Li, Y. Nam and J. Y. Lee, Applied Surface Science, 2020, 514, 146073.
- 9. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, The Journal of Physical Chemistry B, 2004, 108, 17886-17892.