Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

# Supplemental Information for:

# Mechanistic Insights into the Origin of Oxygen Migration Barrier

Daniele Vivona,<sup>a</sup> Kiarash Gordiz,<sup>a</sup> Randall Meyer, <sup>b</sup> Sumathy Raman, <sup>b</sup> and Yang Shao-Horn\*a,<sup>c,d</sup>

<sup>a</sup> Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

<sup>b</sup> ExxonMobil Technology and Engineering Company, Annandale, NJ, USA.

<sup>c</sup> Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

<sup>d</sup> Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA

\*Correspondence to: <a href="mailto:shaohorn@mit.edu">shaohorn@mit.edu</a>

### Contents:

| Supplementary computational methods2                            |   |
|-----------------------------------------------------------------|---|
| Computation of vacancy formation energy2                        |   |
| Computation of vacancy excess charge density2                   | : |
| Supplementary Figures                                           | ; |
| Supplementary Tables                                            | ) |
| Supplementary Electronic Density of States                      | ) |
| Perfect structures with d electrons                             | ) |
| Perfect structures without d electrons53                        | ; |
| NCC defected structures with d electrons56                      | ; |
| CC defected structures with d electrons                         | ) |
| NCC defected structures without d electrons62                   |   |
| CC defected structures without d electrons65                    | , |
| NCC defected structures without d electrons – Transition State  | ; |
| CC defected structures without d electrons – Transition State71 |   |
| Supplemental References                                         |   |

#### Supplementary computational methods

#### **Computation of vacancy formation energy**

The NCC ( $V_0^{\alpha}$ ) and CC ( $V_0^{\bullet\bullet}$ ) vacancy formation energies were computed based on the following expressions:<sup>1</sup>

$$\begin{split} E^{f}[V_{O}^{x}] &= E_{tot}[V_{O}^{x}] - E_{perf} + E_{\frac{1}{2}O_{2}} + \mathsf{PA} \\ E^{f}[V_{O}^{\bullet\bullet}] &= E_{tot}[V_{O}^{\bullet\bullet}] - E_{perf} + E_{\frac{1}{2}O_{2}} + 2E_{F_{CC}} + \mathsf{PA} \end{split}$$

 $E^{f}$  is the vacancy formation energy,  $E_{tot}$  is the cohesive energy of the supercell,  $V_{0}^{x}$  is a neutral oxygen vacancy, and  $V_{0}^{\bullet\bullet}$  corresponds to an oxygen vacancy created with a charge state of +2.  $E_{\frac{1}{2}O_{2}}$  is half of the energy of an oxygen molecule at 0K calculated from DFT under our chosen formalism (see methods section), equal to -4.907 eV.  $E_{F_{cc}}$  is the fermi energy computed in the defected structure with CC oxygen vacancies and is multiplied by 2 as two electrons were removed to introduce a charged (+2) oxygen vacancy. A potential alignment correction (PA) was also included<sup>2,3</sup> by aligning the core potential of electrons to correct for finite supercell effects.

#### Computation of vacancy excess charge density

The vacancy excess charge density was defined using a cluster-type approach based on Bader charge analysis.<sup>4</sup> To calculate the excess atomic charge for a specific site i ( $q_{i,ex}$ ), we subtracted its Bader charge in the defected structure from its charge in the perfect structure, as shown in the equation:

## $q_{i,\text{ex}} = q_{i,\text{defected}} - q_{i,\text{perfect}}$

In this equation, positive values of  $q_{i,ex}$  indicate that site i has a higher electronic charge in the defected structure than in the perfect structure (more electronic charge has redistributed on site i upon vacancy formation). The vacancy excess charge  $q_{V,ex}$  and vacancy volume  $V_V$  were computed by summing the atomic excess charges and volumes of all the first-shell neighbors of an oxygen vacancy. This first shell of neighbors included four A sites and two B sites for perovskite structures. When summing all the values of  $q_{i,ex}$  for the first neighbors, positive resulting values of  $q_{V,ex}$  indicate that electronic charge accumulates around the oxygen vacancy upon its formation.

$$q_{V,ex} = \sum_{\substack{i=\text{first neighbours}\\of the oxygen vacancy}} q_{i,ex}$$
$$V_V = \sum_{\substack{i=\text{first neighbours}\\of the oxygen vacancy}} V_i$$

Finally, we calculated the vacancy excess charge density  $\rho_{V,ex}$  as the ratio between the vacancy excess charge and the vacancy volume:

$$\rho_{V,ex} = \frac{q_{V,ex}}{V_V}$$

The sign of  $\rho_{V,ex}$  follows the same convention as  $q_{V,ex}$  where positive values indicate that electronic charge accumulates around the oxygen vacancy upon its formation.

## Supplementary Figures



**Figure S1. Comparison between ipv and opv migration barriers.** Migration barrier computed for (a) ipv and (b) opv trajectories (in Figure 1b) in comparison with the energy of the O 2p band center vs. Fermi level descriptor computed on the perfect structure without oxygen vacancies.



Perovskite simulated chemical formula

**Figure S2. Comparison of computed and experimental data for perovskites with d electrons.** Migration barriers as a function of the simulated chemical formula. Blue and orange circles represent NCC and CC migration barriers, respectively, while brown circles denote experimental data from the literature (tabulated in Table S4). La<sub>0.75</sub>Sr<sub>0.25</sub>CoO<sub>2.875</sub>, LaCoO<sub>2.875</sub>, La<sub>0.75</sub>Sr<sub>0.25</sub>FeO<sub>2.875</sub>, LaFeO<sub>2.875</sub> were compared with La<sub>0.75</sub>Sr<sub>0.25</sub>CoO<sub>3-x</sub>, LaCoO<sub>3-x</sub>, La<sub>0.9</sub>Sr<sub>0.1</sub>FeO<sub>3-x</sub>, LaFeO<sub>3-x</sub> from Ref.<sup>5</sup>, La<sub>0.75</sub>Sr<sub>0.25</sub>MnO<sub>2.875</sub> was compared with (La<sub>0.79</sub>Sr<sub>0.20</sub>)MnO<sub>3-x</sub> from Ref.<sup>6</sup>, La<sub>0.75</sub>Sr<sub>0.25</sub>CrO<sub>2.875</sub> and LaCrO<sub>2.875</sub> were compared with La<sub>0.9</sub>Ca<sub>0.12</sub>CrO<sub>3-x</sub> from Ref.<sup>7</sup> Extracted migration barriers tabulated in Table S6.



**Figure S3. Correlation between migration barrier and covalency.** Comparison between migration barrier and the energy of metal states vs. the O 2p band center (as depicted in the schematics).



**Figure S4. Comparison of computed and experimental data for perovskites without d electrons.** Migration barriers as a function of the simulated chemical formula. Blue and orange circles represent NCC and CC migration barriers, respectively, while brown circles denote experimental data from the literature (tabulated in Table S4). LaScO<sub>2.875</sub> and La<sub>0.75</sub>Sr<sub>0.25</sub>ScO<sub>2.875</sub> were compared with La<sub>0.9</sub>Sr<sub>0.1</sub>ScO<sub>3-x</sub> from Ref.<sup>8</sup>, CaTiO<sub>2.875</sub> was compared with CaTiO<sub>3-x</sub> from Ref.<sup>5</sup>, SrTiO<sub>2.875</sub> was compared with SrTiO<sub>3-x</sub> from Ref.<sup>9</sup>, BaTiO<sub>2.875</sub> was compared with BaTiO<sub>3-x</sub> from Ref.<sup>10</sup>, LaAlO<sub>2.875</sub> was compared with LaAlO<sub>3-x</sub> cubic from Ref.<sup>11</sup>, La<sub>0.875</sub>Sr<sub>0.125</sub>Al<sub>2.875</sub> was compared with La<sub>0.9</sub>Sr<sub>0.1</sub>AlO<sub>3-x</sub> from Ref.<sup>12</sup>, La<sub>0.75</sub>Sr<sub>0.25</sub>Al<sub>2.875</sub> was compared with La<sub>0.9</sub>Sr<sub>0.1</sub>GaO<sub>3-x</sub> from Ref.<sup>14</sup>, LaGaO<sub>2.875</sub> and La<sub>0.75</sub>Sr<sub>0.25</sub>GaO<sub>2.875</sub> were compared with La<sub>0.9</sub>Sr<sub>0.1</sub>GaO<sub>3-x</sub> from Ref.<sup>14</sup>, LaGaO<sub>2.875</sub> and La<sub>0.75</sub>Sr<sub>0.25</sub>GaO<sub>2.875</sub> were compared with La<sub>0.9</sub>Sr<sub>0.1</sub>GaO<sub>3-x</sub> from Ref.<sup>12</sup>, La<sub>0.07</sub>GaO<sub>2.875</sub> and La<sub>0.75</sub>Sr<sub>0.25</sub>Ca<sub>0.25</sub>AlO<sub>3-x</sub> from Ref.<sup>12</sup>, La<sub>0.9</sub>Sr<sub>0.1</sub>InO<sub>3-x</sub> from Ref.<sup>12</sup> Extracted migration barriers tabulated in Table S6. Brown (black) Triangles correspond to the values of conductivity (diffusivity measured in m<sup>2</sup>/s) extracted at 600 °C from the same references.



**Figure S5. Comparison between migration barriers in this work and computational literature.** Empty and solid circles correspond to oxides with and without d electrons, respectively. Orange data points correspond to CC migration barriers from this work compared to those reported in Ref.<sup>16</sup>. Blue datapoints correspond to NCC migration barriers from this work compared to those reported in Ref.<sup>16</sup>. Black datapoints correspond to NCC migration barriers compared to those reported in Ref.<sup>17</sup>, and gray datapoints correspond to CC migration barriers compared to those reported in Ref.<sup>17</sup>. Data extracted from literature are tabulated in Table S7.



**Figure S6. Electronic signatures of oxygen vacancies and migration barriers in (La,Sr)CoO<sub>3-x</sub>.** Computed electronic density of states (DOS) of (a) LaCoO<sub>3</sub>, LaCoO<sub>2.875</sub> with (b) NCC and (c) CC oxygen vacancies, and La<sub>0.75</sub>Sr<sub>0.25</sub>CoO<sub>2.875</sub> with (d) NCC and (e) CC oxygen vacancies. (f) NCC (blue) and CC (orange) energy landscapes of (La,Sr)CoO<sub>3-x</sub>. Computed electronic DOS of (g) SrCoO<sub>3</sub>, and (h) SrCoO<sub>2.875</sub> with NCC oxygen vacancies.



**Figure S7. Electronic signatures of oxygen vacancies and migration barriers in (La,Sr)NiO<sub>3-x</sub>..** Computed electronic DOS of (a) LaNiO<sub>3</sub>, LaNiO<sub>2.875</sub> with (b) NCC and (c) CC oxygen vacancies, and La<sub>0.75</sub>Sr<sub>0.25</sub>NiO<sub>2.875</sub> with (d) NCC and (e) CC oxygen vacancies. (f) NCC (blue) and CC (orange) energy landscapes of (La,Sr)NiO<sub>3-x</sub>. Computed electronic DOS of (g) SrNiO<sub>3</sub>, and (h) SrTiO<sub>2.875</sub> with NCC oxygen vacancies.



**Figure S8. Origin of vacancy electronic states in LaTiO**<sub>2.875</sub>. Orbital-projected DOS of (a) LaTiO<sub>3</sub> (b) CC LaTiO<sub>2.875</sub>, and (c) NCC LaTiO<sub>2.875</sub>. Electronic orbitals are visualized in different colors as indicated in panel (a): cyan for La 4f, blue for La 5d, gray for Ti 3d, black for Ti 3p, and red for O 2p. For each panel, a zoomed version of the plot (between -5 and 1 eV) is included on the right.



**Figure S9. Site-projected DOS of LaTiO**<sub>2.875</sub>. (a) CC defected supercell of LaTiO<sub>2.875</sub>. Four B-site Ti ions are labeled. Ti<sub>1</sub> and Ti<sub>2</sub> are not neighbors to the oxygen vacancy while Ti<sub>3</sub> and Ti<sub>4</sub> are neighbors to the oxygen vacancy. (b) Computed DOS of CC LaTiO<sub>2.875</sub> projected on (b) not neighbors to the vacancy Ti<sub>1</sub> (left) and Ti<sub>2</sub> (right) and (c) neighbors to the vacancy Ti<sub>3</sub> (left) and Ti<sub>4</sub> (right). (d) NCC defected supercell of LaTiO<sub>2.875</sub>. and DOS of NCC LaTiO<sub>2.875</sub> projected on (e) not neighbors to the vacancy and (f) neighbors to the vacancy.



Figure S10. Electronic DOS of  $La_{0.75}Sr_{0.25}TiO_{2.875}$  with CC oxygen vacancies.



**Figure S11. Trends in excess charge screening of oxygen vacancies.** Normalized atomic excess charge density distribution on the cation sublattice, sorted by distance from the oxygen vacancy, for (a) NCC LaTiO<sub>2.875</sub> (b) CC LaTiO<sub>2.875</sub>, NCC (c) La<sub>0.75</sub>Sr<sub>0.25</sub>TiO<sub>2.875</sub>, (d) NCC LaNiO<sub>2.875</sub>, (e) NCC La<sub>0.75</sub>Sr<sub>0.25</sub>NiO<sub>2.875</sub>, and (f) NCC SrTiO<sub>2.875</sub>. Values of atomic excess charges  $q_{i,ex}$  were normalized based on the total charge for easier comparison. For CC, the atomic excess charges  $\Delta q_{i,ex}$  were referenced to their minimum. Schematic structures with cation IDs corresponding to the x-axis are added to each panel with substituent atoms highlighted in green.



**Figure S12. Electronic signatures of oxygen vacancies and migration barriers in (La,Sr)AlO<sub>3-x</sub>.** Computed electronic DOS of (a) LaAlO<sub>3</sub>, LaAlO<sub>2.875</sub> with (b) NCC and (c) CC oxygen vacancies, and La<sub>0.75</sub>Sr<sub>0.25</sub>AlO<sub>2.875</sub> with (d) NCC and (e) oxygen vacancies. The DOS is referenced to the valence band maximum (VBM) of the perfect structure (LaAlO<sub>3</sub>). (f) NCC (blue) and CC (orange) energy landscapes of (La,Sr)AlO<sub>3-x</sub>.



**Figure S13. Electronic signatures of oxygen vacancies and migration barriers in (La,Sr)InO<sub>3-x</sub>.** Computed electronic DOS of (a) LaInO<sub>3</sub>, LaInO<sub>2.875</sub> with (b) NCC and (c) CC oxygen vacancies, and La<sub>0.75</sub>Sr<sub>0.25</sub>InO<sub>2.875</sub> with (d) NCC and (e) oxygen vacancies. (f) NCC (blue) and CC (orange) migration barrier of (La,Sr) InO<sub>3-x</sub>.



**Figure S14.** Origin of vacancy electronic states in LaGaO<sub>2.875</sub>. Orbital-projected DOS of (a) LaGaO<sub>3</sub> (b) CC LaGaO<sub>2.875</sub>, and (c) NCC LaGaO<sub>2.875</sub>. Electronic orbitals are visualized in different colors as indicated in panel (a): cyan for La 4f, blue for La 5d, gray for Ga 3s, black for Ga 3p, and red for O 2p. For each panel a zoomed version of the plot (between -1 and 5 eV) is included on the right. The O 2p DOS is collapsed as a straight horizontal line in the zoomed version (right panels) of the plots.



**Figure S15. Charge localization in oxygen vacancies of (La,Sr)GaO<sub>2.875</sub>.** Atomic excess charge density distribution on the cation sublattice sorted by distance from the oxygen vacancy for (a) NCC LaGaO<sub>2.875</sub> (b) NCC La<sub>0.75</sub>Sr<sub>0.25</sub>GaO<sub>2.875</sub>, and c) CC LaGaO<sub>2.875</sub>. A schematic structure with cations IDs corresponding to the x-axis is added in each panel. Substituent atoms are indicated in green. It is seen that Sr-substitution (panel b) prevents accumulation of localized charge near oxygen vacancy, similar to CC LaGaO<sub>2.875</sub> (panel c). The atomic excess charge is evaluated as described in the supplementary computational methods.



Figure S16. Electronic DOS of  $La_{0.75}Sr_{0.25}GaO_{2.875}$  with NCC oxygen vacancies.



Figure S17. Electronic descriptors of vacancy excess charge density. Bottom x-axis for oxides with d electrons: comparison between the vacancy excess charge density and the O 2p band center vs. Fermi level ( $E_F$ ). Top x-axis for oxides without d electrons: comparison between the vacancy excess charge density and the energy of lowest unoccupied vs. highest occupied states for oxides without d electrons.



**Figure S18. Correlation between migration barrier and vacancy excess charge density with PBE+U formalism.** a) Comparison between vacancy excess charge density with PBE+U and PBE formalism. b) Comparison between migration barrier and vacancy excess charge density with PBE+U formalism (Pearson correlation coefficient=0.82). Data are tabulated in Table S4.



**Figure S19. Comparison between vacancy formation energies in this work and computational literature.** Empty and solid circles correspond to oxides with and without d electrons, respectively. Orange datapoints correspond to CC vacancy formation energies from this work compared to those reported in Ref.<sup>16</sup>. Blue datapoints correspond to NCC vacancy formation energies from this work compared to those reported in Ref.<sup>16</sup>. Black datapoints correspond to NCC migration barriers compared to those reported in Ref.<sup>17</sup>, and grey datapoints correspond to CC migration barriers compared to those reported in Ref.<sup>17</sup>, and grey datapoints correspond to CC migration barriers compared to those reported in Ref.<sup>18</sup>. The vacancy formation energies from Mayeshiba and Morgan<sup>16</sup> were reported at 1073 K and 1 bar and we referenced at 0K for comparison with our data. Data extracted from the literature are tabulated in Table S7.



**Figure S20. Electronic origin of increased NCC vacancy formation energy penalty in oxides without d electrons.** Comparison between the NCC vacancy formation energy and the energy highest occupied states referenced to the valence band maximum (VBM), as shown in the schematic. Comparison between the increased NCC vacancy formation energy vs. the CC vacancy formation energy (right vertical axis) and energy highest occupied states referenced to the valence band maximum (VBM) is also shown by the black datapoint. The blue continuous line (y=2x) is shown.



**Figure S21. Signatures of ion migration in the DOS of LaTiO<sub>2.875</sub>.** (a) Computed DOS for LaTiO<sub>2.875</sub> with (a) CC and (b) NCC oxygen vacancies for initial (left), transition (center), and final state (right) during oxygen ion migration. (c) Visualization of normalized atomic excess charge in NCC LaTiO<sub>2.875</sub> during migration. Colors indicate the normalized atomic excess charge density from orange (0%) to blue (50%). The migration oxygen ion is in black and its direction is highlighted by the black arrow. The atomic excess charge is evaluated as described in the supplementary computational methods.



**Figure S22.** Changes in the energy of conduction band minimum vs. filled localized states from equilibrium to transition state. A schematic is shown at the top left to depict how the axes were computed.



Figure S23. Trends in filled vacancy states, charge screening, and migration barrier in the transition state. (a) Comparison between the charge screening from equilibrium to saddle point (computed as the difference between vacancy excess charge between initial and transition state) and  $E_{1NCC}+E_{2NCC}$  (highlighted by the top right schematic and in Figure 6a). (b) Comparison between the migration barrier and charge screening from equilibrium to saddle point. The vacancy excess charge is evaluated as described in the supplementary computational methods.



**Figure S24**. **Site projected DOS of Ga atoms in CC LaGaO**<sub>2.875</sub> **during migration.** Computed DOS projected on the Ga atom (a) forming a bond and (b) breaking a bond with the migrating oxygen ion for the initial (left), transition (center), final (right) state.



Figure S25. Changes in the energy of empty localized states associated with oxygen vacancies. (a) Comparison between the variation in energy of empty localized states during oxygen migration ( $E_{1CC}$  as highlighted in the schematic and in Figure 7a) and the energy of empty localized states vs. VMB at transition state. (b) Comparison between the energy of empty localized states at transition vs. initial state (horizontal axis). A schematic is shown at the top left to depict how the axes were computed.



Figure S26. Trends of empty vacancy states, covalency, and migration barriers at the transition state. (a) Comparison between  $E_{1CC}$  (as highlighted in the schematic and in Figure 7a) and the energy of metal states vs. the O 2p band center at the transition state. Comparison between migration barrier and the energy of metal states vs. the O 2p band center at the transition state for perovskites (b) without and. (c) with d electrons.



**Figure S27. Oxygen ion transport in**  $Sr_{0.75}K_{0.25}SnO_{2.875}$ . (a) Computed electronic structure of  $SrSnO_3$ , (b) CC  $SrSnO_{2.875}$ , (c) NCC  $Sr_{0.75}K_{0.25}SnO_{2.875}$ . (d) Energy landscape of two different migration pathways, as shown in the top schematic. Substituent K atoms are highlighted in green, the hopping ion is in black and the two opv and ipv migration pathways are highlighted in green and magenta, respectively.



**Figure S28. Electronic structure of Na**<sub>0.5</sub>**Bi**<sub>0.5</sub>**TiO**<sub>2.875</sub>. Computed electronic DOS of (a) Na<sub>0.5</sub>**Bi**<sub>0.5</sub>**TiO**<sub>2.875</sub> and projections onto atoms belonging to the (b) TiO<sub>2</sub>, (c) BiO<sup>+</sup> and (d) NaO<sup>-</sup> layers. The O 2p band center is highlighted by the red horizontal line.



**Figure S29. Computed migration pathways.** (a) In the rutile crystal structure, the opv pathway was computed from an apical to an equatorial site along the edge of one  $MO_6$  octahedron, and the ipv pathway was computed from one apical site to the next apical site along the a-axis. (b) In the fluorite crystal structure, the opv and ipv migration pathways were computed along two edges of the  $MO_8$  cube.



**Figure S30. Electronic signatures of oxygen vacancies in rutile GeO<sub>2-x</sub>.** Computed electronic DOS of (a) GeO<sub>2</sub>, GeO<sub>1.9583</sub> with (b) NCC and (c) CC oxygen vacancies.



**Figure S31. Electronic signatures of oxygen vacancies in rutile HfO**<sub>2-x</sub>**.** Computed electronic DOS of (a) HfO<sub>2</sub>, HfO<sub>1.96875</sub> with (b) NCC and (c) CC oxygen vacancies.



Figure S32. Correlation between vacancy excess charge density and energy of vacancy states relative to CBM for rutile and fluorite structures. The vacancy excess charge density was computed considering three and four neighboring cations to the oxygen vacancy for rutile (squares) and fluorite (diamonds) structures, respectively. A schematic is shown at the top left to depict how the energy of vacancy states relative to CBM was computed.


**Figure S33. Trends of migration barrier with the energy of vacancy states.** (a) Sorted values of energy of vacancy states relative to the conduction band minimum (CBM) extracted from reference.<sup>19</sup>



Figure S34. Comparison between migration barrier and energy of vacancy states relative to CBM for rutile and fluorite structures. (a) ipv and (b) opv NCC migration barriers, (c) ipv and (d) opv CC migration barriers. A schematic of the pathway is included for rutile (top left) and fluorite (bottom left) structures. Rutile and fluorite structures are labeled as squares and diamonds, respectively.

## **Supplementary Tables**

Table S1. Crystal structure information and magnetic

moments for the obtained perfect perovskite structures. Magnetic moments of LaBO3 perovskites decrease with B changing in the order Fe > Cr > Co > V > Ni > Ti, consistent with experimentally reported values of 4.6+-0.2 for LaFeO3,<sup>21</sup> 2.8 +- 0.2 for LaCrO3,<sup>21</sup> 2 for LaCoO3 at 90K,<sup>22</sup> 1.4 for LaVO3,<sup>23</sup> 1 for LaNiO3,<sup>24</sup> and 0.45 for LaTiO3 at 10K.<sup>25</sup>

| staichiomatric formula |              |            | lattice constants (Å) |       | lattice angles (°) |       |       | magnetic moment |           |
|------------------------|--------------|------------|-----------------------|-------|--------------------|-------|-------|-----------------|-----------|
| stoichiometric formula | lattice yype | spacegroup | а                     | b     | c                  | α     | β     | γ               | (μB/atom) |
| BalnO3                 | orthorhombic | Pnma       | 8.549                 | 8.527 | 8.549              | 90    | 89.19 | 90              | 0.2       |
| BaTiO3                 | monoclinic   | Pc         | 8.062                 | 8.062 | 8.062              | 90    | 90    | 90              | 0.0       |
| BaZrO3                 | orthorhombic | Imma       | 8.501                 | 8.5   | 8.501              | 90    | 89.96 | 90              | 0.0       |
| CaTiO3                 | monoclinic   | Pc         | 7.879                 | 7.874 | 7.879              | 90    | 89.91 | 90              | 0.0       |
| CaZrO3                 | orthorhombic | Pnma       | 8.067                 | 8.058 | 8.066              | 90    | 91.93 | 90              | 0.0       |
| DyAlO3                 | orthorhombic | Pnma       | 7.487                 | 7.436 | 7.487              | 90    | 91.77 | 90              | 0.0       |
| DyGaO3                 | orthorhombic | Pnma       | 7.704                 | 7.625 | 7.703              | 90    | 93.14 | 90              | 0.0       |
| Er0.75Sr0.25GaO3       | monoclinic   | Pm         | 7.747                 | 7.685 | 7.699              | 90    | 92.67 | 90              | 0.0       |
| ErAlO3                 | orthorhombic | Pnma       | 7.458                 | 7.398 | 7.458              | 90    | 92.23 | 90              | 0.0       |
| ErCoO3                 | orthorhombic | Pnma       | 7.509                 | 7.347 | 7.509              | 90    | 94.33 | 90              | 0.0       |
| ErGaO3                 | orthorhombic | Pnma       | 7.663                 | 7.6   | 7.662              | 90    | 93.32 | 90              | 0.0       |
| La0.5Sr0.5NiO3         | monoclinic   | P2_1/m     | 7.805                 | 7.621 | 7.645              | 90    | 89.29 | 90              | 0.1       |
| La0.75Sr0.25AlO3       | monoclinic   | P2/m       | 7.876                 | 7.871 | 7.863              | 90    | 89.54 | 90              | 0.0       |
| La0.75Sr0.25CoO3       | monoclinic   | Pm         | 7.692                 | 7.686 | 7.698              | 90.02 | 89.5  | 89.98           | 0.4       |
| La0.75Sr0.25CrO3       | monoclinic   | Pm         | 7.801                 | 7.795 | 7.798              | 90    | 89.92 | 90              | 0.6       |
| La0.75Sr0.25FeO3       | monoclinic   | Pm         | 7.753                 | 7.739 | 7.748              | 90.05 | 89.67 | 90.04           | 0.7       |
| La0.75Sr0.25GaO3       | monoclinic   | Pm         | 7.876                 | 7.871 | 7.863              | 90    | 89.54 | 90              | 0.0       |
| La0.75Sr0.25InO3       | monoclinic   | Pm         | 8.345                 | 8.346 | 8.332              | 90    | 92.11 | 90              | 0.1       |
| La0.75Sr0.25MnO3       | monoclinic   | Pm         | 7.827                 | 7.819 | 7.816              | 90    | 89.82 | 90              | 0.6       |
| La0.75Sr0.25NiO3       | monoclinic   | Pm         | 7.708                 | 7.701 | 7.696              | 90    | 89.43 | 90              | 0.1       |
| La0.75Sr0.25ScO3       | monoclinic   | Pm         | 8.176                 | 8.148 | 8.159              | 90    | 91.29 | 90              | 0.0       |
| La0.75Sr0.25TiO3       | monoclinic   | Pm         | 7.92                  | 7.924 | 7.918              | 90    | 90.37 | 90              | 0.1       |
| La0.75Sr0.25TlO3       | monoclinic   | Pm         | 8.556                 | 8.588 | 8.537              | 90    | 93.08 | 90              | 0.0       |
| La0.75Sr0.25VO3        | monoclinic   | Pm         | 7.845                 | 7.825 | 7.843              | 90    | 90.01 | 90              | 0.4       |
| La0.875Sr0.125AlO3     | orthorhombic | Amm2       | 7.64                  | 7.615 | 7.673              | 90    | 89.76 | 90              | 0.0       |
| La0.875Sr0.125ScO3     | monoclinic   | Pm         | 8.156                 | 8.139 | 8.19               | 90    | 91.37 | 90              | 0.0       |
| LaAlO3                 | orthorhombic | Imma       | 7.64                  | 7.615 | 7.673              | 90    | 89.76 | 90              | 0.0       |
| LaCoO3                 | orthorhombic | Pnma       | 7.724                 | 7.725 | 7.759              | 90    | 89.76 | 90              | 0.3       |
| LaCrO3                 | orthorhombic | Pnma       | 7.844                 | 7.824 | 7.844              | 89.99 | 90.26 | 90.01           | 0.6       |
| LaCuO3                 | orthorhombic | Pnma       | 7.81                  | 7.789 | 7.81               | 90    | 89.7  | 90              | 0.0       |
| LaFeO3                 | orthorhombic | Pnma       | 7.804                 | 7.789 | 7.805              | 90    | 90.08 | 90              | 0.7       |
| LaGaO3                 | orthorhombic | Pnma       | 7.874                 | 7.87  | 7.875              | 90    | 90.27 | 90              | 0.0       |
| LaInO3                 | orthorhombic | Pnma       | 8.325                 | 8.334 | 8.325              | 90    | 92.31 | 90              | 0.0       |
| LaMnO3                 | orthorhombic | Pnma       | 7.892                 | 7.864 | 7.895              | 90    | 90.5  | 90.01           | 0.8       |
| LaNiO3                 | orthorhombic | Pnma       | 7.715                 | 7.726 | 7.715              | 90    | 89.76 | 90              | 0.1       |
| LaPdO3                 | orthorhombic | Pnma       | 8.273                 | 7.855 | 8.273              | 90    | 93.89 | 90              | 0.0       |
| LaRuO3                 | orthorhombic | Pnma       | 8.06                  | 7.911 | 8.059              | 90    | 94.76 | 90              | 0.2       |
| LaScO3                 | orthorhombic | Pnma       | 8.156                 | 8.139 | 8.19               | 90    | 91.37 | 90              | 0.0       |
| LaTiO3                 | orthorhombic | Pnma       | 7.939                 | 7.931 | 7.939              | 89.99 | 90.86 | 90.01           | 0.0       |
| LaTIO3                 | orthorhombic | Pnma       | 8.516                 | 8.604 | 8.553              | 90    | 93.22 | 90              | 0.0       |

| LaVO3              | orthorhombic | Pnma   | 7.873 | 7.877 | 7.873 | 90    | 90.43 | 90    | 0.2 |
|--------------------|--------------|--------|-------|-------|-------|-------|-------|-------|-----|
| LaYO3              | orthorhombic | Pnma   | 8.507 | 8.589 | 8.507 | 90    | 92.04 | 90    | 0.0 |
| PrCoO3             | orthorhombic | Pnma   | 7.718 | 7.693 | 7.751 | 89.94 | 90.44 | 90.14 | 0.3 |
| PrFeO3             | orthorhombic | Pnma   | 7.81  | 7.731 | 7.769 | 90    | 90.87 | 89.99 | 0.7 |
| PrGaO3             | orthorhombic | Pnma   | 7.849 | 7.828 | 7.849 | 90    | 90.88 | 90    | 0.0 |
| PrMnO3             | orthorhombic | Pnma   | 7.876 | 7.824 | 7.876 | 90    | 91.18 | 90    | 0.8 |
| PrNiO3             | orthorhombic | Pnma   | 7.691 | 7.69  | 7.69  | 90    | 90.09 | 90    | 0.1 |
| PrScO3             | orthorhombic | Pnma   | 8.123 | 8.102 | 8.123 | 90    | 92.05 | 90    | 0.0 |
| PrTiO3             | orthorhombic | Pnma   | 7.931 | 7.879 | 7.932 | 90    | 91.67 | 90    | 0.2 |
| PrVO3              | orthorhombic | Pnma   | 7.862 | 7.84  | 7.895 | 90    | 91.41 | 90    | 0.2 |
| Sm0.75Sr0.25GaO3   | monoclinic   | Pm     | 7.831 | 7.777 | 7.803 | 90    | 91.47 | 90    | 0.1 |
| Sm0.875Sr0.125AlO3 | monoclinic   | Pm     | 7.546 | 7.537 | 7.546 | 90    | 90.39 | 90    | 0.0 |
| SmAlO3             | orthorhombic | Pnma   | 7.546 | 7.537 | 7.546 | 90    | 90.39 | 90    | 0.0 |
| SmCuO3             | orthorhombic | Pnma   | 7.76  | 7.611 | 7.76  | 90    | 92.85 | 90    | 0.0 |
| SmGaO3             | orthorhombic | Pnma   | 7.794 | 7.726 | 7.794 | 90    | 92.21 | 90    | 0.0 |
| <u>SrCoO3</u>      | orthorhombic | Imma   | 7.673 | 7.667 | 7.672 | 90    | 89.91 | 90    | 0.5 |
| SrCuO3             | orthorhombic | Imma   | 7.757 | 7.778 | 7.757 | 90    | 89.76 | 90    | 0.1 |
| SrNiO3             | orthorhombic | Pmc2_1 | 7.674 | 7.743 | 7.672 | 90    | 89.56 | 90    | 0.0 |
| SrTiO3             | orthorhombic | Imma   | 7.879 | 7.874 | 7.879 | 90    | 89.91 | 90    | 0.0 |
| SrZrO3             | orthorhombic | Pnma   | 8.273 | 8.259 | 8.273 | 90    | 90.5  | 90    | 0.0 |
| YAIO3              | orthorhombic | Pnma   | 7.489 | 7.432 | 7.489 | 90    | 91.87 | 90    | 0.0 |
| YCoO3              | orthorhombic | Pnma   | 7.556 | 7.412 | 7.556 | 90.01 | 93.74 | 89.99 | 0.0 |
| YCrO3              | orthorhombic | Pnma   | 7.687 | 7.598 | 7.691 | 90.01 | 93.37 | 89.99 | 0.6 |
| YFeO3              | orthorhombic | Pnma   | 7.707 | 7.533 | 7.708 | 90    | 94.1  | 90.01 | 0.7 |
| YGaO3              | orthorhombic | Pnma   | 7.72  | 7.636 | 7.719 | 90    | 93.03 | 90    | 0.0 |
| YMnO3              | orthorhombic | Pnma   | 7.769 | 7.602 | 7.768 | 90.01 | 93.83 | 90.01 | 0.8 |
| YNiO3              | orthorhombic | Pnma   | 7.632 | 7.413 | 7.631 | 89.99 | 93.89 | 90.01 | 0.2 |
| YScO3              | orthorhombic | Pnma   | 7.929 | 7.981 | 7.929 | 90    | 92.97 | 90    | 0.0 |
| YTiO3              | orthorhombic | Pnma   | 7.817 | 7.695 | 7.85  | 90    | 93.79 | 90.01 | 0.2 |
| YVO3               | orthorhombic | Pnma   | 7.728 | 7.637 | 7.728 | 89.99 | 93.8  | 90    | 0.4 |

 Table S2. Computed NCC and CC vacancy formation energies and migration barriers.

|                        |                           | NCC Migration Barrier | CC Vacancy Formation | NCC Vacancy Formation |
|------------------------|---------------------------|-----------------------|----------------------|-----------------------|
| chemical formula       | CC Migration Barrier (eV) | (eV)                  | Energy (eV)          | Energy (eV)           |
| BalnO2.875             | 0.5832                    | 0.5809                | -0.7053              | -0.5488               |
| BaTiO2.875             | 0.5830                    | 0.7515                | 0.7194               | 5.2307                |
| BaZrO2.875             | 0.5831                    | 1.6027                | 1.2024               | 6.5627                |
| CaTiO2.875             | 0.1058                    | 0.3105                | 0.2214               | 5.4882                |
| CaZrO2.875             | 0.4888                    |                       | 0.8399               |                       |
| DyAlO2.875             | 0.5675                    | 3.0553                | 1.4105               | 6.5755                |
| DyGaO2.875             | 0.4470                    | 2.2789                | 0.1735               | 5.2951                |
| Er0.75Sr0.25GaO2.875   |                           | 0.4685                |                      | 0.1990                |
| ErAlO2.875             | 0.6066                    | 3.0829                | 1.1190               | 6.6217                |
| ErCoO2.875             | 1.1541                    | 1.4199                | 3.1014               | 3.5339                |
| ErGaO2.875             | 0.4791                    | 2.3137                | 0.2190               | 5.2830                |
| La0.5Sr0.5NiO2.875     |                           | 0.7182                |                      | 0.8399                |
| La0.75Sr0.25AlO2.875   | 0.5435                    | 0.5854                | 0.2831               | 0.4973                |
| La0.75Sr0.25CoO2.875   | 0.7709                    | 0.7599                | 1.9526               | 2.2952                |
| La0.75Sr0.25CrO2.875   | 1.2327                    | 0.8934                | 3.8170               | 4.4030                |
| La0.75Sr0.25FeO2.875   | 0.6138                    | 0.6919                | 3.5103               | 3.2440                |
| La0.75Sr0.25GaO2.875   | 0.4354                    | 0.3158                | -0.3794              | -0.1453               |
| La0.75Sr0.25InO2.875   |                           | 0.2894                |                      | 0.0716                |
| La0.75Sr0.25MnO2.875   | 0.7783                    | 0.8122                | 2.9085               | 3.1570                |
| La0.75Sr0.25NiO2.875   | 0.7398                    | 0.7724                | 1.1135               | 1.3973                |
| La0.75Sr0.25ScO2.875   | 0.3180                    | 0.3430                | 0.3598               | 0.5487                |
| La0.75Sr0.25TiO2.875   | 1.6051                    | 1.6958                | 5.9760               | 5.9676                |
| La0.75Sr0.25TlO2.875   |                           | 0.1969                |                      | -0.1954               |
| La0.75Sr0.25VO2.875    | 1.1365                    | 1.3838                | 4.9747               | 5.1445                |
| La0.875Sr0.125AlO2.875 | 0.6007                    | 1.7981                | 0.5521               | 3.3154                |
| La0.875Sr0.125ScO2.875 | 0.3755                    | 1.2530                | 0.6204               | 2.3546                |
| LaAlO2.875             | 0.6235                    | 2.9162                | 1.0157               | 6.2177                |
| LaCoO2.875             | 0.6857                    | 0.7995                | 2.6089               | 2.8650                |
| LaCrO2.875             | 1.0554                    | 1.4389                | #DIV/0!              | 5.1785                |
| LaCuO2.875             | 0.5227                    | 0.5666                | 0.8457               | 1.1526                |
| LaFeO2.875             | 0.5310                    | 0.8489                | 3.6144               | 3.6392                |
| LaGaO2.875             | 0.3332                    | 2.0420                | 0.1601               | 5.1021                |
| LaInO2.875             | 0.3510                    | 1.7581                | 0.3516               | 4.5221                |
| LaMnO2.875             | 1.0573                    | 1.0980                | 4.5934               | 4.7650                |
| LaNiO2.875             | 0.7845                    | 0.8834                | 1.8937               | 2.1513                |
| LaPdO2.875             | 1.0930                    | 1.1132                | 2.1276               | 2.1134                |
| LaRuO2.875             | 1.4567                    | 1.6200                | 3.9316               | 4.0001                |
| LaScO2.875             | 0.4285                    | 1.8220                | 0.9759               | 6.4640                |
| LaTiO2.875             | 1.4843                    | 1.5418                | 5.9663               | 5.8765                |
| LaTIO2.875             | 0.2056                    | 0.7982                | 0.3135               | 2.1002                |
| LaVO2.875              | 1.3713                    | 1.5972                | 5.3475               | 5.2981                |
| LaYO2.875              | 0.2572                    | 1.1511                | 1.0400               | 6.4989                |
| PrCoO2.875             | 0.7020                    | 0.6942                | 2.7809               | 3.0466                |
| PrFeO2.875             | 0.8563                    | 0.8976                | 3.6301               | 3.8243                |
| PrGaO2.875             | 0.3450                    | 2.1174                | 0.7346               | 5.1656                |

| PrMnO2.875             | 1.4152 | 1.7766 | 4.4810  | 4.5458  |
|------------------------|--------|--------|---------|---------|
| PrNiO2.875             | 0.8492 | 0.8745 | 2.0993  | 2.3237  |
| PrScO2.875             | 0.4724 | 1.8495 | 1.6620  | 6.3980  |
| PrTiO2.875             | 1.5719 | 1.5329 | 5.8665  | 5.6700  |
| PrVO2.875              | 1.4154 | 1.7797 | 5.5188  | 5.7685  |
| Sm0.75Sr0.25GaO2.875   |        | 0.3862 |         | -0.1773 |
| Sm0.875Sr0.125AlO2.875 | 0.4302 | 1.6524 | 0.3936  | 3.3353  |
| SmAlO2.875             | 0.5631 | 3.1735 | 1.3416  | 6.4367  |
| SmCuO2.875             | 0.6557 |        | 1.1326  |         |
| SmGaO2.875             | 0.3499 | 2.2095 | 0.2108  | 5.2202  |
| SrCoO2.875             |        | 0.6450 |         | 0.6536  |
| SrCuO2.875             | 0.7032 | 0.7737 | -0.9861 | -0.7251 |
| SrNiO2.875             |        | 0.4760 |         | -0.2452 |
| SrTiO2.875             | 0.4597 | 0.6485 | 0.8256  | 5.2225  |
| SrZrO2.875             | 0.5197 | 1.4870 | 1.2203  | 6.6308  |
| YAIO2.875              | 0.6419 |        | 1.0963  | 6.5283  |
| YCoO2.875              | 1.1221 | 1.2584 | 2.6950  | 3.4609  |
| YCrO2.875              | 1.0730 |        | 5.0608  |         |
| YFeO2.875              | 1.1914 | 1.0170 | 4.5835  | 3.9407  |
| YGaO2.875              | 0.4177 | 2.2103 | 0.1776  | 5.2677  |
| YMnO2.875              | 1.1922 |        | 4.5742  |         |
| YNiO2.875              | 0.9704 | 1.0922 | 2.5122  | 2.4385  |
| YScO2.875              | 0.3378 | 1.7675 | 1.0802  | 6.5493  |
| YTiO2.875              | 1.4067 | 1.2995 | 5.9420  | 6.0474  |
| YVO2.875               | 1.5887 | 1.8070 | 5.5840  | 5.3934  |

**Table S3.** Computed electronic descriptors of migration barrier and vacancy formation energy. The orbital overlap was computed as the relative position of filled metal d and O 2p bands for oxides with d electrons while for oxides without d electrons and localized charge it was computed as the relative position of the lowest unoccupied metal states vs. the top filled localized states (as defined by the Fermi level).

| chemical formula       | O 2p Band<br>Center vs E⊧<br>(eV)<br>Figure 1c | CC O 2p<br>Band Center<br>vs E₅ (eV)<br>Figure 5b | NCC O 2p Band<br>Center vs E⊧<br>(eV)<br>Figure 5b | NCC Orbital<br>overlap<br>(eV)<br>Figure 1d | CC Orbital<br>overlap<br>(eV)<br>Figure 1d | CC vacancy<br>excess<br>charge<br>density<br>(e/Å <sup>3</sup> )<br>Figure 1e | vacancy<br>excess<br>charge<br>density<br>(e/Å <sup>3</sup> )<br>Figure 1e |
|------------------------|------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| BalnO2 875             | -1 450                                         | -1 430                                            | -1 464                                             |                                             |                                            | 0.000                                                                         | 0.002                                                                      |
| BaTiO2.875             | -1.896                                         | -2.023                                            | -4.158                                             | 0.000                                       |                                            | 0.000                                                                         | 0.006                                                                      |
| BaZrO2.875             | -1.608                                         | -1.732                                            | -4.935                                             | 0.070                                       |                                            | 0.000                                                                         | 0.011                                                                      |
| CaTiO2.875             | -1.732                                         | -1.989                                            | -4.543                                             | 0.000                                       |                                            | 0.000                                                                         | 0.006                                                                      |
| CaZrO2.875             | -1.456                                         | -1.543                                            |                                                    | 0.680                                       |                                            | 0.001                                                                         |                                                                            |
| DyAlO2.875             | -2.089                                         | -2.129                                            | -4.807                                             | 2.731                                       |                                            | 0.000                                                                         | 0.023                                                                      |
| DyGaO2.875             | -1.803                                         | -1.855                                            | -3.696                                             | 2.161                                       |                                            | 0.001                                                                         | 0.019                                                                      |
| Er0.75Sr0.25GaO2.875   | -1.815                                         |                                                   | -1.912                                             |                                             |                                            |                                                                               | 0.003                                                                      |
| ErAlO2.875             | -2.113                                         | -2.104                                            | -4.821                                             | 2.911                                       |                                            | 0.000                                                                         | 0.025                                                                      |
| ErCoO2.875             | -3.776                                         | -3.728                                            | -4.060                                             | 1.996                                       | 1.717                                      | 0.002                                                                         | 0.012                                                                      |
| ErGaO2.875             | -1.839                                         | -1.849                                            | -3.665                                             | 2.231                                       |                                            | 0.001                                                                         | 0.020                                                                      |
| La0.5Sr0.5NiO2.875     | -2.663                                         |                                                   | -2.837                                             | 0.719                                       |                                            |                                                                               | -0.019                                                                     |
| La0.75Sr0.25AlO2.875   | -1.907                                         | -1.934                                            | -5.066                                             |                                             |                                            | 0.000                                                                         | 0.002                                                                      |
| La0.75Sr0.25CoO2.875   | -3.413                                         | -3.421                                            | -3.593                                             | 1.086                                       | 0.740                                      | 0.000                                                                         | 0.005                                                                      |
| La0.75Sr0.25CrO2.875   | -3.817                                         | -3.929                                            | -4.005                                             | 1.546                                       | 1.345                                      | 0.001                                                                         | 0.009                                                                      |
| La0.75Sr0.25FeO2.875   | -4.014                                         | -3.857                                            | -4.165                                             | 0.912                                       | 0.495                                      | 0.000                                                                         | 0.007                                                                      |
| La0.75Sr0.25GaO2.875   | -1.778                                         | -1.815                                            | -1.917                                             |                                             |                                            | 0.000                                                                         | 0.003                                                                      |
| La0.75Sr0.25InO2.875   | -1.421                                         |                                                   | -1.518                                             |                                             |                                            |                                                                               | 0.003                                                                      |
| La0.75Sr0.25MnO2.875   | -3.030                                         | -3.858                                            | -4.227                                             | 1.037                                       | 0.837                                      | 0.004                                                                         | 0.006                                                                      |
| La0.75Sr0.25NiO2.875   | -2.901                                         | -2.827                                            | -3.103                                             | 1.003                                       | 0.734                                      | 0.001                                                                         | 0.005                                                                      |
| La0.75Sr0.25ScO2.875   | -1.397                                         | -1.429                                            | -5.066                                             | 0.000                                       |                                            | 0.000                                                                         | 0.002                                                                      |
| La0.75Sr0.25TiO2.875   | -5.358                                         | -5.087                                            | -5.392                                             | 1.159                                       | 1.132                                      | 0.007                                                                         | 0.013                                                                      |
| La0.75Sr0.25TlO2.875   | -1.477                                         |                                                   | -1.518                                             |                                             |                                            |                                                                               | 0.003                                                                      |
| La0.75Sr0.25VO2.875    | -4.743                                         | -4.805                                            | -4.857                                             | 1.837                                       | 1.531                                      | 0.006                                                                         | 0.012                                                                      |
| La0.875Sr0.125AlO2.875 | -2.089                                         | -2.170                                            | -4.491                                             | 0.880                                       |                                            | 0.005                                                                         | 0.009                                                                      |
| La0.875Sr0.125ScO2.875 | -1.377                                         | -1.424                                            | -3.906                                             | 0.930                                       |                                            | 0.000                                                                         | 0.007                                                                      |
| LaAlO2.875             | -2.187                                         | -2.262                                            | -4.655                                             | 1.430                                       |                                            | 0.000                                                                         | 0.017                                                                      |
| LaCoO2.875             | -3.536                                         | -3.843                                            | -3.684                                             | 1.437                                       | 1.017                                      | 0.001                                                                         | 0.006                                                                      |
| LaCrO2.875             | -4.071                                         | -3.495                                            | -4.667                                             | 1.746                                       | 1.510                                      | 0.004                                                                         | 0.012                                                                      |
| LaCuO2.875             | -2.738                                         | -2.655                                            | -2.885                                             | 0.060                                       | -0.193                                     | 0.000                                                                         | 0.004                                                                      |
| LaFeO2.875             | -4.227                                         | -4.081                                            | -4.311                                             | 1.128                                       | 0.816                                      | 0.001                                                                         | 0.008                                                                      |
| LaGaO2.875             | -1.815                                         | -1.906                                            | -3.641                                             | 1.831                                       |                                            | 0.000                                                                         | 0.015                                                                      |
| LaInO2.875             | -1.484                                         | -1.522                                            | -3.024                                             | 1.580                                       |                                            | 0.001                                                                         | 0.013                                                                      |
| LaMnO2.875             | -4.377                                         | -4.022                                            | -4.365                                             | 1.101                                       | 0.928                                      | 0.002                                                                         | 0.010                                                                      |
| LaNiO2.875             | -3.187                                         | -3.121                                            | -3.427                                             | 1.395                                       | 1.015                                      | 0.001                                                                         | 0.006                                                                      |
| LaPdO2.875             | -3.337                                         | -3.169                                            | -3.392                                             | 0.339                                       | 0.149                                      | 0.004                                                                         | 0.008                                                                      |
| LaRuO2.875             | -4.252                                         | -4.165                                            | -4.281                                             | 1.786                                       | 1.557                                      | 0.005                                                                         | 0.011                                                                      |

| LaScO2.875             | -1.449 | -1.480 | -4.564 | 0.840  |        | 0.000  | 0.013 |
|------------------------|--------|--------|--------|--------|--------|--------|-------|
| LaTiO2.875             | -5.589 | -5.314 | -5.538 | 1.547  | 1.107  | 0.008  | 0.014 |
| LaTIO2.875             | -1.794 | -1.813 | -2.055 | 1.230  | 1.230  | 0.000  | 0.009 |
| LaVO2.875              | -4.815 | -4.780 | -4.907 | 2.139  | 1.846  | 0.006  | 0.013 |
| LaYO2.875              | -1.214 | -1.283 | -5.405 | 1.040  |        | 0.000  | 0.012 |
| PrCoO2.875             | -3.566 | -3.550 | -3.766 | 1.654  | 1.215  | 0.001  | 0.007 |
| PrFeO2.875             | -4.282 | -4.050 | -4.335 | 1.159  | 0.774  | 0.003  | 0.008 |
| PrGaO2.875             | -1.797 | -1.893 | -3.673 | 1.931  | 0.000  | 0.001  | 0.016 |
| PrMnO2.875             | -4.406 | -4.148 | -4.537 | 1.196  | 1.017  | 0.004  | 0.011 |
| PrNiO2.875             | -3.287 | -3.196 | -3.492 | 1.364  | 1.063  | 0.002  | 0.006 |
| PrScO2.875             | -1.471 | -1.513 | -5.562 | 1.060  |        | 0.000  | 0.014 |
| PrTiO2.875             | -5.665 | -5.391 | -5.572 | 1.622  | 1.197  | 0.009  | 0.017 |
| PrVO2.875              | -4.958 | -4.684 | -4.898 | 2.165  | 1.810  | 0.008  | 0.014 |
| Sm0.75Sr0.25GaO2.875   | -1.754 |        | -1.901 | 0.000  |        |        | 0.003 |
| Sm0.875Sr0.125AlO2.875 | -2.067 | -2.152 | -4.617 | 1.020  |        | 0.001  | 0.011 |
| SmAlO2.875             | -2.097 | -2.243 | -4.900 | 2.061  |        | 0.000  | 0.020 |
| SmCuO2.875             | -2.816 | -2.735 |        |        | -0.125 | 0.002  |       |
| SmGaO2.875             | -1.771 | -1.869 | -3.669 | 2.041  |        | 0.001  | 0.017 |
| SrCoO2.875             | -2.865 |        | -3.054 | 0.011  |        |        | 0.004 |
| SrCuO2.875             | -2.143 | -2.152 | -2.205 | -0.737 | -0.751 | 0.001  | 0.003 |
| SrNiO2.875             | -2.413 |        | -2.482 | 0.255  |        |        | 0.002 |
| SrTiO2.875             | -2.129 | -2.290 | -4.492 | 0.000  |        | 0.000  | 0.008 |
| SrZrO2.875             | -1.517 | -1.688 | -4.883 | 0.420  |        | 0.001  | 0.013 |
| YAIO2.875              | -2.069 | -2.103 | -4.779 | 2.641  |        | -0.001 | 0.022 |
| YCoO2.875              | -3.732 | -3.668 | -3.988 | 1.975  | 1.679  | 0.002  | 0.010 |
| YCrO2.875              | -4.131 | -3.999 |        |        | 1.646  | 0.004  |       |
| YFeO2.875              | -4.180 | -3.914 | -4.272 | 0.950  | 0.852  | 0.003  | 0.009 |
| YGaO2.875              | -1.773 | -1.818 | -3.673 | 2.121  | 2.121  | 0.001  | 0.019 |
| YMnO2.875              | -4.413 | -4.182 |        |        | 0.928  | 0.003  |       |
| YNiO2.875              | -3.460 | -3.318 | -3.559 | 1.268  | 1.038  | 0.003  | 0.008 |
| YScO2.875              | -1.594 | -1.540 | -5.721 | 1.110  | 1.110  | 0.000  | 0.017 |
| YTiO2.875              | -5.474 | -5.381 | -5.505 | 1.733  | 1.505  | 0.011  | 0.018 |
| YVO2.875               | -4.909 | -4.779 | -4.987 | 2.258  | 1.955  | 0.009  | 0.017 |

**Table S4.** DFT+U computed vacancy formation energies and migration barriers for selected oxides. The U correction values utilized were sourced in the Materials Project and are calibrated based on formation enthalpies of transition metal oxides.<sup>26</sup>

| Compour    | nd TM | U value | CC<br>migration<br>barrier<br>(eV) | NCC<br>migration<br>barrier (eV) | CC<br>vacancy<br>formation<br>energy (eV) | NCC<br>vacancy<br>formation<br>energy<br>(eV) | CC vacancy<br>excess<br>charge<br>density<br>(e/Å <sup>3</sup> ) | NCC<br>vacancy<br>excess<br>charge<br>density<br>(e/Å <sup>3</sup> ) |
|------------|-------|---------|------------------------------------|----------------------------------|-------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|
| LaCoO2.87  | 5 Co  | 3.32    | 0.6715                             | 0.7945                           | 2.7554                                    | 2.9754                                        | 0.0011                                                           | 0.0061                                                               |
| LaFeO2.875 | 5 Fe  | 5.3     | 1.0409                             |                                  | 4.6122                                    |                                               | 0.0038                                                           |                                                                      |
| LaMnO2.87  | 75 Mn | 3.9     |                                    | 1.4959                           |                                           | 5.0961                                        |                                                                  | 0.0093                                                               |
| LaVO2.875  | V     | 3.25    | 1.1008                             | 2.6720                           | 5.2753                                    | 5.6025                                        | 0.0051                                                           | 0.0151                                                               |
| PrCoO2.875 | 5 Co  | 3.32    | 0.4176                             | 0.5880                           | 2.9285                                    | 3.2020                                        | 0.0003                                                           | 0.0059                                                               |
| PrMnO2.87  | 75 Mn | 3.9     | 0.6664                             |                                  | 5.1267                                    |                                               | 0.0018                                                           |                                                                      |
| PrNiO2.875 | 5 Ni  | 6.2     |                                    | 0.7813                           |                                           | 2.3349                                        |                                                                  | 0.0065                                                               |
| PrVO2.875  | V     | 3.25    | 1.4219                             | 1.8120                           | 5.4273                                    | 5.4799                                        | 0.0079                                                           | 0.0146                                                               |
| YCoO2.875  | Со    | 3.32    | 1.1336                             | 1.4051                           | 2.7802                                    | 3.1997                                        | 0.0023                                                           | 0.0111                                                               |
| YMnO2.875  | 5 Mn  | 3.9     |                                    | 0.8683                           | 4.6737                                    | 5.0874                                        | 0.0018                                                           | 0.0093                                                               |
| YVO2.875   | Y     | 3.25    | 1.0743                             |                                  | 5.9157                                    |                                               | 0.0078                                                           |                                                                      |

 Table S5. Kinetic electronic structure descriptors of migration barrier.

| chemical formula       | E1cc - Raise in<br>energy of empty<br>vacancy electronic<br>states<br>(eV)<br>Figure 7b | E1 <sub>cc</sub> - Raise in<br>energy of empty<br>vacancy electronic<br>states (eV)<br>Figure 7b | E1 <sub>NCC</sub> + E2 <sub>NCC</sub><br>(eV)<br>Figure 6c |
|------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| BaTiO2.875             |                                                                                         |                                                                                                  | 0                                                          |
| BaZrO2.875             |                                                                                         |                                                                                                  | -0.0901                                                    |
| CaTiO2.875             |                                                                                         |                                                                                                  |                                                            |
| DyAlO2.875             |                                                                                         | 0.9721                                                                                           | 1.9905                                                     |
| DyGaO2.875             |                                                                                         | 0.4768                                                                                           | 1.7605                                                     |
| Er0.75Sr0.25GaO2.875   | 0.545                                                                                   |                                                                                                  |                                                            |
| ErAlO2.875             |                                                                                         | 0.9419                                                                                           | 2.1606                                                     |
| ErGaO2.875             |                                                                                         | 0.4816                                                                                           | 1.8405                                                     |
| La0.75Sr0.25AlO2.875   | 0.7602                                                                                  | 0.6901                                                                                           |                                                            |
| La0.75Sr0.25GaO2.875   | 0.5953                                                                                  | 0.7403                                                                                           |                                                            |
| La0.75Sr0.25InO2.875   | 0.43                                                                                    |                                                                                                  |                                                            |
| La0.75Sr0.25ScO2.875   | 0.6415                                                                                  | 0.5769                                                                                           |                                                            |
| La0.75Sr0.25TlO2.875   | 0.2888                                                                                  |                                                                                                  |                                                            |
| La0.875Sr0.125AlO2.875 |                                                                                         | 0.8502                                                                                           | 0.6701                                                     |
| La0.875Sr0.125ScO2.875 |                                                                                         | 0.5901                                                                                           | 0.4902                                                     |
| LaAlO2.875             |                                                                                         | 0.88                                                                                             | 1.4304                                                     |
| LaGaO2.875             |                                                                                         | 0.5518                                                                                           | 1.5204                                                     |
| LaInO2.875             |                                                                                         | 0.32                                                                                             | 1.2903                                                     |
| LaScO2.875             |                                                                                         | 0.631                                                                                            | 0.7102                                                     |
| LaTIO2.875             |                                                                                         | 0.152                                                                                            | 0.4401                                                     |
| LaYO2.875              |                                                                                         | 0.3246                                                                                           | 0.6401                                                     |
| PrGaO2.875             |                                                                                         | 0.5299                                                                                           | 1.5404                                                     |
| PrScO2.875             |                                                                                         | 0.6488                                                                                           | 0.6402                                                     |
| Sm0.75Sr0.25GaO2.875   | 0.5212                                                                                  |                                                                                                  |                                                            |
| Sm0.875Sr0.125AlO2.875 |                                                                                         | 0.8302                                                                                           | 0.6502                                                     |
| SmAlO2.875             |                                                                                         | 0.9502                                                                                           | 2.0605                                                     |
| SmGaO2.875             |                                                                                         | 0.5503                                                                                           | 1.6504                                                     |
| SrTiO2.875             |                                                                                         |                                                                                                  | 0                                                          |
| SrZrO2.875             |                                                                                         | 0.6802                                                                                           | -0.0501                                                    |
| YAIO2.875              |                                                                                         | 0.9621                                                                                           | 1.7904                                                     |
| YGaO2.875              |                                                                                         | 0.4633                                                                                           | 1.7304                                                     |
| YScO2.875              |                                                                                         | 0.3094                                                                                           | 0.9403                                                     |
|                        |                                                                                         |                                                                                                  |                                                            |

 Table S6. Experimental data gathered from literature for comparison with computation.

|                        |                                                        | Experimental |           |
|------------------------|--------------------------------------------------------|--------------|-----------|
| chemical formula       |                                                        | migration    |           |
|                        | experimental chemical formula                          | barrier (eV) | Reference |
| BaTiO2.875             | BaTiO3-x                                               | 0.70         | 9         |
| CaTiO2.875             | CaTiO3-x                                               | 0.49         | 5         |
| DyAlO2.875             | Dy0.975Ca0.025AlO3-x                                   | 1.24         | 14        |
| La0.75Sr0.25AlO2.875   | La0.8Sr0.2AlO2.9                                       | 0.91         | 13        |
| La0.75Sr0.25GaO2.875   | La0.9Sr0.1GaO3-x                                       | 0.60         | 12        |
| La0.75Sr0.25InO2.875   | La0.9Sr0.1InO3                                         | 0.70         | 12        |
| La0.75Sr0.25ScO2.875   | $La_{0.9}Sr_{0.1}ScO_{3\cdot x}$                       | 0.47         | 8         |
| La0.875Sr0.125AlO2.875 | La0.9Sr0.1AlO3                                         | 0.95         | 8         |
| LaAlO2.875             | LaAlO3-x; cubic                                        | 0.65         | 11        |
| LaGaO2.875             | La0.9Sr0.1GaO3                                         | 0.60         | 12        |
| LaInO2.875             | La0.9Sr0.1InO3                                         | 0.70         | 12        |
| LaScO2.875             | La <sub>0.9</sub> Sr <sub>0.1</sub> ScO <sub>3-x</sub> | 0.47         | 8         |
| PrGaO2.875             | Pr0.93Ca0.07Ga0.85Mg0.15O3-x                           | 0.65         | 15        |
| SrTiO2.875             | SrTiO3-x                                               | 0.65         | 9         |
| La0.75Sr0.25CoO2.875   | La <sub>0.75</sub> Sr <sub>0.25</sub> CoO3-x           | 0.82         | 5         |
| La0.75Sr0.25CrO2.875   | La0.9Ca0.12CrO3-x                                      | 1.74         | 7         |
| La0.75Sr0.25FeO2.875   | La <sub>0.9</sub> Sr <sub>0.1</sub> FeO <sub>3-x</sub> | 0.77         | 5         |
| La0.75Sr0.25MnO2.875   | La0.79Sr0.2MnO3                                        | 0.73         | 6         |
| LaCoO2.875             | LaCoO3                                                 | 0.80         | 5         |
| LaCrO2.875             | La0.9Ca0.12CrO3-x                                      | 1.74         | 7         |
| LaFeO2.875             | LaFeO <sub>3-x</sub>                                   | 0.77         | 5         |

**Table S7.** Computational data gathered from literature for comparison. MB refers to "migration barrier" and Evac refers to "vacancy formation energy". The vacancy formation energies in Ref.<sup>16</sup> are reported at 1073K and 1 bar and were referenced at OK for comparison with the data from this work by adding a conversion factor for the energy of oxygen at OK (+0.902 eV).

| Chemical Formula     | CC<br>MB<br>from<br>Ref. <sup>16</sup><br>(eV) | CC<br>MB from<br>Ref. <sup>14</sup><br>(eV) | NCC MB<br>from<br>Ref. <sup>16</sup><br>(eV) | NCC MB<br>from<br>Ref. <sup>17</sup><br>(eV) | CC<br>Evac<br>from<br>Ref. <sup>16</sup><br>(eV) | NCC<br>Evac MB<br>from<br>Ref. <sup>16</sup><br>(eV) | NCC<br>Evac MB<br>from<br>Ref. <sup>17</sup><br>(eV) | NCC<br>Evac MB<br>from<br>Ref. <sup>18</sup><br>(eV) |
|----------------------|------------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| BaTiO2.875           | 0.67                                           |                                             |                                              |                                              | -0.09                                            |                                                      |                                                      |                                                      |
| BaZrO2.875           | 0.69                                           |                                             |                                              |                                              | 0.08                                             |                                                      |                                                      |                                                      |
| DyAlO2.875           | 0.55                                           | 0.38                                        |                                              |                                              | 0.04                                             |                                                      |                                                      |                                                      |
| DyGaO2.875           | 0.44                                           |                                             |                                              |                                              | -0.65                                            |                                                      |                                                      |                                                      |
| ErAlO2.875           | 0.59                                           |                                             |                                              |                                              | 0.11                                             |                                                      |                                                      |                                                      |
| ErCoO2.875           | 1.22                                           |                                             |                                              |                                              | 1.08                                             |                                                      |                                                      |                                                      |
| ErGaO2.875           | 0.47                                           |                                             |                                              |                                              | -0.62                                            |                                                      |                                                      |                                                      |
| La0.75Sr0.25CoO2.875 | 0.79                                           |                                             |                                              |                                              | 1.40                                             |                                                      |                                                      |                                                      |
| La0.75Sr0.25CrO2.875 | 1.17                                           |                                             |                                              |                                              | 3.52                                             |                                                      |                                                      |                                                      |
| La0.75Sr0.25FeO2.875 | 1.00                                           |                                             |                                              |                                              | 2.46                                             |                                                      |                                                      |                                                      |
| La0.75Sr0.25GaO2.875 | 0.39                                           |                                             |                                              |                                              | -1.04                                            |                                                      |                                                      |                                                      |
| La0.75Sr0.25MnO2.875 | 0.97                                           |                                             |                                              |                                              | 3.20                                             |                                                      |                                                      |                                                      |
| La0.75Sr0.25NiO2.875 | 0.85                                           |                                             |                                              |                                              | 0.51                                             |                                                      |                                                      |                                                      |
| La0.75Sr0.25ScO2.875 | 0.51                                           |                                             |                                              |                                              | -0.34                                            |                                                      |                                                      |                                                      |
| La0.75Sr0.25TiO2.875 | 1.55                                           |                                             |                                              |                                              | 5.26                                             |                                                      |                                                      |                                                      |
| La0.75Sr0.25VO2.875  | 1.33                                           |                                             |                                              |                                              | 4.57                                             |                                                      |                                                      |                                                      |
| LaAlO2.875           | 0.64                                           | 0.87                                        |                                              |                                              | -0.06                                            |                                                      |                                                      |                                                      |
| LaCoO2.875           | 0.70                                           |                                             | 0.76                                         | 0.76                                         | 1.66                                             | 1.97                                                 | 2.48                                                 | 2.99                                                 |
| LaCrO2.875           | 0.97                                           |                                             | 1.67                                         | 1.75                                         | 3.92                                             | 4.29                                                 | 5.49                                                 | 4.91                                                 |
| LaFeO2.875           | 0.83                                           |                                             | 0.81                                         | 0.85                                         | 2.67                                             | 2.66                                                 | 4.74                                                 | 3.97                                                 |
| LaGaO2.875           | 0.35                                           |                                             | 2.07                                         |                                              | -0.71                                            | 4.19                                                 |                                                      |                                                      |
| LaInO2.875           | 0.39                                           |                                             |                                              |                                              | -0.60                                            |                                                      |                                                      |                                                      |
| LaMnO2.875           | 0.75                                           |                                             | 0.94                                         |                                              | 3.46                                             | 3.43                                                 | 4.01                                                 | 4.69                                                 |
| LaNiO2.875           | 0.81                                           |                                             | 0.90                                         | 0.80                                         | 0.94                                             | 1.22                                                 | 1.59                                                 | 2.59                                                 |
| LaPdO2.875           | 1.04                                           |                                             |                                              |                                              | 1.08                                             |                                                      |                                                      |                                                      |
| LaRuO2.875           | 1.43                                           |                                             |                                              |                                              | 2.99                                             |                                                      |                                                      |                                                      |
| LaScO2.875           | 0.46                                           |                                             | 1.97                                         | 1.80                                         | 0.10                                             | 5.59                                                 | 7.07                                                 | 6.09                                                 |
| LaTiO2.875           | 1.60                                           |                                             | 1.61                                         | 1.65                                         | 5.09                                             | 5.05                                                 | 6.44                                                 | 6.21                                                 |
| LaTIO2.875           | 0.21                                           |                                             |                                              |                                              | -0.71                                            |                                                      |                                                      |                                                      |
| LaVO2.875            | 1.36                                           |                                             | 1.63                                         | 1.58                                         | 4.52                                             | 4.62                                                 | 6.05                                                 | 5.35                                                 |
| LaYO2.875            | 0.32                                           |                                             |                                              |                                              | 0.15                                             |                                                      |                                                      |                                                      |
| PrCoO2.875           | 0.68                                           |                                             | 0.76                                         |                                              | 1.71                                             | 2.04                                                 |                                                      |                                                      |
| PrFeO2.875           | 0.80                                           |                                             | 0.83                                         |                                              | 2.73                                             | 2.70                                                 |                                                      |                                                      |
| PrGaO2.875           | 0.35                                           |                                             | 2.13                                         |                                              | -0.48                                            | 4.26                                                 |                                                      |                                                      |
| PrMnO2.875           | 0.75                                           |                                             | 1.03                                         |                                              | 3.63                                             | 3.48                                                 |                                                      |                                                      |
| PrNiO2.875           | 0.85                                           |                                             | 0.88                                         |                                              | 1.17                                             | 1.40                                                 |                                                      |                                                      |
| PrScO2.875           | 0.49                                           |                                             | 2.03                                         |                                              | 0.17                                             | 5.51                                                 |                                                      |                                                      |
| PrTiO2.875           | 1.62                                           |                                             | 1.54                                         |                                              | 5.11                                             | 4.86                                                 |                                                      |                                                      |
| PrVO2.875            | 1.46                                           |                                             | 1.75                                         |                                              | 4.57                                             | 4.62                                                 |                                                      |                                                      |
| SmAlO2.875           | 0.55                                           | 0.53                                        |                                              |                                              | -0.13                                            |                                                      |                                                      |                                                      |

| SmCuO2.875 | 0.66 |      | 0.23  |      |    |
|------------|------|------|-------|------|----|
| SmGaO2.875 | 0.36 |      | -0.56 |      |    |
| SrTiO2.875 | 0.46 |      | 0.05  |      | 5. |
| YCoO2.875  | 1.17 | 1.47 | 1.78  | 1.92 |    |
| YCrO2.875  | 1.22 | 2.16 | 4.16  | 4.45 |    |
| YFeO2.875  | 1.29 | 0.97 | 2.62  | 2.65 |    |
| YGaO2.875  | 0.43 | 2.33 | -0.68 | 4.34 |    |
| YMnO2.875  | 0.93 | 1.26 | 3.74  | 3.51 |    |
| YNiO2.875  | 1.11 | 1.22 | 1.49  | 1.55 |    |
| YScO2.875  | 0.42 | 1.90 | 0.20  | 5.59 |    |
| YTiO2.875  | 1.56 | 1.57 | 5.02  | 5.13 |    |
| YVO2.875   | 1.43 | 1.90 | 4.70  | 4.74 |    |
|            |      |      |       |      |    |

5.57

## **Supplementary Electronic Density of States**

Perfect structures with d electrons







## Perfect structures without d electrons

























2

-8











## NCC defected structures without d electrons – Transition State










## Supplemental References

- 1. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev Mod Phys 86, 253–305 (2014).
- Goyal, A., Gorai, P., Peng, H., Lany, S. & Stevanović, V. A computational framework for automation of point defect calculations. *Comput Mater Sci* 130, 1–9 (2017).
- Lany, S. & Zunger, A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs. *Phys Rev B* 78, 235104 (2008).
- Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. *Comput Mater Sci* 36, 354–360 (2006).
- Ishigaki, T., Yamauchi, S., Kishio, K., Mizusaki, J. & Fueki, K. Diffusion of oxide ion vacancies in perovskite-type oxides. J Solid State Chem 73, 179–187 (1988).
- Belzner, A., Gür, T. M. & Huggins, R. A. Oxygen chemical diffusion in strontium doped lanthanum manganites. Solid State Ion 57, 327–337 (1992).
- Yasuda, I., Ogasawara, K. & Hishinuma, M. Oxygen tracer diffusion in polycrystalline calcium-doped lanthanum chromites. *Journal of the American Ceramic Society* 80, 3009–3012 (1997).
- Nomura, K. & Tanase, S. Electrical conduction behavior in (La0.9Sr0.1)MIIIO3-δ (MIII = AI, Ga, Sc, In, and Lu) perovskites. *Solid State Ion* 98, 229–236 (1997).
- 9. De Souza, R. A., Metlenko, V., Park, D. & Weirich, T. E. Behavior of oxygen vacancies in single-crystal SrTiO 3: Equilibrium distribution and diffusion kinetics. *Phys Rev B Condens Matter Mater Phys* **85**, 1–11 (2012).
- 10. Kessel, M., De Souza, R. A. & Martin, M. Oxygen diffusion in single crystal barium titanate. *Physical Chemistry Chemical Physics* **17**, 12587–12597 (2015).
- 11. Hayward, S. A. *et al.* Transformation processes in la al o 3: Neutron diffraction, dielectric, thermal, optical, and raman studies. *Phys Rev B* **72**, 054110 (2005).
- 12. Takahashi, T. & Iwahara, H. Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell. *Energy Conversion* **11**, 105–111 (1971).
- Chen, T.-Y. & Fung, K.-Z. Comparison of dissolution behavior and ionic conduction between Sr and/or Mg doped LaGaO3 and LaAlO3. *J Power Sources* 132, 1–10 (2004).
- Kilner, J. A. & Brook, R. J. A study of oxygen ion conductivity in doped non-stoichiometric oxides. *Solid State Ion* 6, 237–252 (1982).
- 15. Ishihara, T. *et al.* Oxide Ion Conductivity in Doubly Doped PrGaO3 Perovskite-Type Oxide. *J Electrochem Soc* **146**, 1643 (1999).
- Mayeshiba, T. T. & Morgan, D. D. Factors controlling oxygen migration barriers in perovskites. *Solid State Ion* 296, 71–77 (2016).
- 17. Zheng, Y.-S. *et al.* Electronic origin of oxygen transport behavior in La-based perovskites: a density functional theory study. *The Journal of Physical Chemistry C* **123**, 275–290 (2018).
- Curnan, M. T. & Kitchin, J. R. Effects of concentration, crystal structure, magnetism, and electronic structure method on first-principles oxygen vacancy formation energy trends in perovskites. *The Journal of Physical Chemistry C* 118, 28776–28790 (2014).
- 19. Linderalv, C., Lindman, A. & Erhart, P. A unifying perspective on oxygen vacancies in wide band gap oxides. *J Phys Chem Lett* **9**, 222–228 (2018).

- 20. Muy, S. *et al.* Tuning mobility and stability of lithium ion conductors based on lattice dynamics. *Energy Environ Sci* **11**, 850–859 (2018).
- 21. Koehler, W. C. & Wollan, E. O. Neutron-diffraction study of the magnetic properties of perovskite-like compounds LaBO3. *Journal of Physics and Chemistry of Solids* **2**, 100–106 (1957).
- 22. Saitoh, T. *et al.* Electronic structure and temperature-induced paramagnetism in LaCoO 3. *Phys Rev B* **55**, 4257 (1997).
- Kikuchi, J., Yasuoka, H., Kokubo, Y. & Ueda, Y. Antiferromagnetic Nuclear Resonance of 51V in LaVO3 and YVO3. J Physical Soc Japan 63, 3577–3580 (1994).
- 24. Sreedhar, K. *et al.* Electronic properties of the metallic perovskite LaNiO 3: Correlated behavior of 3d electrons. *Phys Rev B* **46**, 6382 (1992).
- 25. Goral, J. P. & Greedan, J. E. The magnetic structures of LaTiO3 and CeTiO3. *J Magn Magn Mater* **37**, 315–321 (1983).
- 26. Wang, M. & Navrotsky, A. Enthalpy of formation of LiNiO2, LiCoO2 and their solid solution, LiNi1– xCoxO2. *Solid State Ion* **166**, 167–173 (2004).