## Non-thermal plasma enabled catalytic dry reforming of methane over ceria nanorods

## supported NiO catalyst: the role of Ru as coke resistant active sites

Md Robayet Ahasan,<sup>1</sup> Md Monir Hossain,<sup>2</sup> and Ruigang Wang<sup>2\*</sup>

<sup>1</sup>Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa,

AL 35487, United States

<sup>2</sup>Department of Chemical Engineering and Materials Science, Michigan State University, East

Lansing, MI 48824, United States



Fig. S1 XRD patterns of the fresh and spent 14 wt% Ni -1 wt% Ru/CeO<sub>2</sub> NR catalysts.



Fig. S2 Raman spectra of the fresh and spent 14 wt% Ni -1 wt% Ru/CeO<sub>2</sub> NR catalysts.



Fig. S3 XPS survey of the fresh and spent 14 wt% Ni -1 wt% Ru/CeO<sub>2</sub> NR catalysts.



Fig. S4 TEM images of the spent 14 wt% Ni -1 wt% Ru/CeO<sub>2</sub> NR catalyst.



Fig. S5 DRM reaction performance under plasma only (without catalyst) condition: (a)  $CH_4$  and  $CO_2$  conversion, (b) Carbon balance, (c) CO and  $H_2$  mole concentration, (d) yield and selectivity, from 150 °C to 450 °C. (Catalyst weight: ~200 mg, Power: 17.66 to 22.73 W, Flow rate:  $CO_2$ : 250 sccm and  $CH_4$ : 100 sccm, and Frequency: 20 kHz).



Fig. S6 DRM reaction performance under plasma + bare CeO<sub>2</sub> NR condition: (a) CH<sub>4</sub> and CO<sub>2</sub> conversion, (b) Carbon balance, (c) CO and H<sub>2</sub> mole concentration, (d) yield and selectivity, from 150 °C to 450 °C. (Catalyst weight: ~200 mg, Power: 17.66 to 22.73 W, Flow rate: CO<sub>2</sub>: 250 sccm and CH<sub>4</sub>: 100 sccm, and Frequency: 20 kHz).



Fig. S7 Applied voltage and current signals in the plasma catalytic system.



Fig. S8 Temperature measurement at plasma catalytic reaction zone with thermopile infrared array sensor and infrared thermometer.



Fig. S9 H<sub>2</sub>-TPR profiles of the CeO<sub>2</sub> NR, RuO<sub>2</sub>, NiO, 1 wt% RuO<sub>x</sub>/CeO<sub>2</sub> NR, 15 wt% NiO/CeO<sub>2</sub> NR and bimetallic 14 wt% Ni-1 wt% Ru/CeO<sub>2</sub> NR catalysts.



Fig. S10 CO<sub>2</sub>-TPD profiles of the CeO<sub>2</sub> NR, RuO<sub>2</sub>, NiO, 1 wt% RuO<sub>x</sub>/CeO<sub>2</sub> NR, 15 wt% NiO/CeO<sub>2</sub> NR and bimetallic 14 wt% Ni-1 wt% Ru/CeO<sub>2</sub> NR catalysts.



Fig. S11 CO-TPD profiles of the CeO<sub>2</sub> NR, RuO<sub>2</sub>, NiO, 1 wt% RuO<sub>x</sub>/CeO<sub>2</sub> NR, 15 wt% NiO/CeO<sub>2</sub> NR and bimetallic 14 wt% Ni-1 wt% Ru/CeO<sub>2</sub> NR catalysts.



Fig. S12 XPS profile of Ce 3d for the spent 14 wt% Ni-1 wt% Ru/CeO<sub>2</sub> NR catalyst.



Fig. S13 (a-b) Thermal and (b-c) plasma assisted catalytic CH<sub>4</sub> and CO<sub>2</sub> conversion at various temperatures with 15 wt% Ni/CeO<sub>2</sub> NR, 1 wt% Ru/CeO<sub>2</sub> NR and 14 wt% Ni-1 wt% Ru/CeO<sub>2</sub> NR (Catalyst weight: ~200 mg, Flow rate: CO<sub>2</sub>: 250 sccm and CH<sub>4</sub>: 100 sccm, and Frequency: 20 kHz).



Fig. S14 Stability of 15 wt% Ni/CeO<sub>2</sub> NR, 1 wt% Ru/CeO<sub>2</sub> NR and 14 wt% Ni -1 wt% Ru/CeO<sub>2</sub> NR catalyst at 350 °C for plasma catalytic DRM (solid line: CO and dashed line: H<sub>2</sub>).

Table S1. Plasma properties and experimental parameters for the plasma catalytic systems.

| Plasma properties & Experimental parameters |                   |  |  |  |
|---------------------------------------------|-------------------|--|--|--|
| Plasma power                                | 17.66 W – 22.73 W |  |  |  |
| Plasma type                                 | Sinusoidal        |  |  |  |
| Frequency                                   | 20 KHz            |  |  |  |
| Gas flow rate                               | 350 sccm          |  |  |  |
| CH <sub>4</sub> : CO <sub>2</sub>           | 100:250           |  |  |  |
| Furnace temperature range                   | 150 °C – 450 °C   |  |  |  |

| Catalyst                          | Plasma | Temperature | CH₄            | CO <sub>2</sub> Conversion | References |
|-----------------------------------|--------|-------------|----------------|----------------------------|------------|
|                                   | type   | (° C)       | Conversion (%) | (%)                        |            |
| Commercial                        | DBD    | 500         | 59             | 42                         | [1]        |
| Ni/Al <sub>2</sub> O <sub>3</sub> |        |             |                |                            |            |
| 15 wt% Ni/CeO <sub>2</sub>        | DBD    | 500         | 66             | 40                         | [2]        |
| NR                                |        |             |                |                            |            |
| 1 wt% Ru /CeO <sub>2</sub>        | DBD    | 450         | 51             | 37                         | [3]        |
| NR                                |        |             |                |                            |            |
| 14 wt% Ni- 1                      | DBD    | 450         | 92             | 70                         | This work  |
| wt% Ru/CeO <sub>2</sub>           |        |             |                |                            |            |
| NR                                |        |             |                |                            |            |

Table S2. Comparison of plasma-assisted DRM activity over different catalysts.

## References

- Q. Wang, B.-H. Yan, Y. Jin, Y. Cheng, Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 catalyst: interaction of catalyst and plasma, Energy & Fuels. 23 (2009) 4196–4201.
- [2] M.R. Ahasan, M.M. Hossain, Z. Barlow, X. Ding, R. Wang, Low-Temperature Plasma-Assisted Catalytic Dry Reforming of Methane over CeO2 Nanorod-Supported NiO Catalysts in a Dielectric Barrier Discharge Reactor, ACS Appl Mater Interfaces. (2023).
- [3] M.R. Ahasan, M.M. Hossain, X. Ding, R. Wang, Non-equilibrium plasma-assisted dry reforming of methane over shape-controlled CeO 2 supported ruthenium catalysts, J Mater Chem A Mater. 11 (2023) 10993–11009.