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1. General Information

High-resolution transmission electron microscopy (HRTEM) was performed by JEM 2100F (operated
at an accelerating voltage of 200 kV). UV-vis absorption spectra and PL spectra of CsPbBr; NCs hexane
solution were recorded by Lambd950 and LS-55, respectively. The X-ray photoelectron spectra (XPS)
measurements were performed by an ESCALAB 250 spectrophotometer with Al-Ka radiation. And the
binding energy scale was using C 1s peak at 284.8 eV. X-ray powder diffraction pattern (XRD) was
conducted on a Bruker AXS D8 X-ray diffractometer (parameters: Cu Ka, A = 1.5406 A, 100 mA, and 40
kV), and the CsPbBr; NCs dispersed in hexane were dropped on the surface of clean glass and measured.
FT-IR spectra was recorded on a FT-IR spectrometer (Nicolet) with a KBr disk. PL spectrum and time-
resolved PL decay curves for CsPbBr; powers capped with BF, were conducted on a FLS-920
fluorescence lifetime spectrophotometer (Edinburgh Instruments, UK) under the excitation of 405 nm.
1H NMR, 3C NMR and °F NMR were recorded using a JEOL 400 MHz instrument with tetramethylsilane
(TMS) as an internal standard. Chemical shifts are reported in ppm from TMS with the solvent
resonance. Standard abbreviations indicating multiplicity were used as following: s = singlet, d =
doublet, t = triplet, dd = double doublet, q = quartet, m = multiplet. HRMS was obtained on a WATERS
I-Class VION IMS Q-Tof with an ESI source. All reagents were purchased from commercial suppliers and

used without further purification.

2. Synthesis of CsPbBr; NCs

CsPbBr; NCs were synthesized by reported methods, which involved following steps:

(1) Synthesis of Cs-oleate stock solution: Cs-oleate solution was synthesized according to previously
reports.>2In a typical synthesis, ODE (8.75 mL) and OA (1.25 mL) were added to a 25 mL three-necked
flask with Cs,CO; (0.326 g, 1.0 mmol), which was degassed with purging N, at 120 °C for 1 h. The
temperature was raised to 150 °C using a mantle and kept for several minutes until the complete
dissolution of Cs,CO;. After that, a light-yellow clear solution was obtained, which should be preheated

to above 80 °C before use.

(2) Synthesis of CsPbBr; seed clusters: CsPbBr; seed clusters were prepared by reported methods.» 2
Briefly, ODE (9.6 mL), OA (1.8 mL) and OLA (1.8 mL) were introduced to a 25 mL three-necked flask with

PbBr, (0.22 g, 0.6 mmol). The reaction flask was degassed with purging N, at 120 °C for 1 h. The solution




was cooled down to room temperature naturally. Subsequently, the above prepared Cs-oleate solution
(0.66 mL) was quickly injected into the flask with severely stirring under N, at room temperature. After
10 min stirring, a turbid solution was obtained. The precipitate was collected by centrifugation (7500
rpm, 10 min). After that, the seed clusters solution was obtained by dispersing the precipitate into 3

mL ODE for further use.

(3) Synthesis of CsPbBr; nanocubes (Cube): CsPbBr; nanocubes were synthesized according to reported
method.’ 2 14 mL ODE was added into a 25 mL three-necked flask and degassed under vacuum for 30
min. The flask was filled with purging N, and heated at 120 °C for 1 h. Then the temperature was
increased to 180 °C using a mantle. The above obtained seed clusters solution (4.0 mL) was quickly
injected under N, and heated for 5 min. Then, the solution was cooled down to room temperature
naturally. The nanocrystals were collected by centrifugation (7500 rpm, 10 min) and washed twice with
hexane.

(4) Synthesis of CsPbBr; nanocube polyhedron nanocrystals (Poly): CsPbBr; polyhedron nanocrystals
were synthesized by reported methods. 2 14 mL ODE was introduced into a 25 mL three-necked flask
and degassed under vacuum for 30 min. It was heated to 120 °C under N, for 1 h. The temperature was
increased to 230 °C, and the prepared seed clusters solution (4.0 mL) was quickly injected under N, and
kept for 10 min. The solution was cooled down to room temperature naturally. The solution was
centrifuged (7500 rpm, 10 min) and the precipitate was collected, which was washed twice with
hexane. After that, CsPbBr; polyhedron nanocrystals were obtained.

Ligand exchange of NCs: Ligand exchange was performed by reported methods.?* CsPbBr; nanocrystals
(250 mg) were dispersed in 10 mL ethyl acetate. NH,BF, (30 mg) was dispersed in 1 mL ethyl acetate,
which was slowly added into the CsPbBr; ethyl acetate solution under vigorous stirring. After stirring
for 30 min, the solution was centrifuged (7500 rpm, 10 min), and the precipitate was collected. It was
dried at 60 °C under vacuum and CsPbBr; capped with BF,”was obtained.

3. Synthesis of Starting Materials

3.1 General procedure for the synthesis of N-aryl amino acids 1a-1h
COOH

NH, o (1) NaOAc, EtOH, reflux NH
+ .
" /© Br\)LOEt (2) NaOH, THF/EtOH/H,0 = 3/1/1 ] Q

50 °C
1a-1h

Compounds 1a-1h were prepared according to the General Procedure 1 (GP1).> Para-substituted




substituted aniline (5 mmol, 1.0 equiv), ethyl bromoacetate (6 mmol, 1.2 equiv) and anhydrous sodium
acetate (10 mmol, 2.0 equiv) were added into a 100 mL reaction tube with 20 mL anhydrous ethanol
and refluxed for 12 h. The reaction solution was filtered to remove the precipitate and the solvent was
rotary removed by evaporation. The product was purified by column chromatography (petroleum
ether/EtOAc = 10/1) to give N-phenylglycine ester. N-phenylglycine ester (1.0 mmol, 1.0 equiv), NaOH
(3.3 mmol, 3.3 equiv), H,0 (10 mL), EtOH (10 mL) and THF (30 mL) were added to a 100 mL reaction
tube and stirred at 50 °C for 3 h. Then the reaction solution was concentrated to remove organic
solution, and the resulted aqueous layer was extracted with EA (3 x 10 mL) to remove the organic waste.
After that, hydrochloric acid was added into the aqueous layer to acidify until pH = 2~3. It was extracted
with ethyl acetate (3 x 20 mL). The combined organic layer was washed with NaCl aqueous solution and

dried over Na,SO,. The solution was concentrated to give the target products 1a-1h (Yields: 72-92%).
3.2 General procedure for synthesis of N-aryl maleimides 2a-2h
o) (1) AcOH, 120-130 °C, 5-8 h o

Q (2) Hz0 E§

R-NH, + | © = || N-R
(3) NaHCO3 (aqg)
R = Aryl, Alkyl % o]
2a-2h

Compounds 2a-2h were prepared according to the General procedure 2 (GP2).° Maleic anhydride
(6 mmol, 2.0 equiv) was added to 30 mL acetic acid and stirred until maleic anhydride was completely
dissolved. Aniline (3 mmol, 1.0 equiv) was added to above mixture at room temperature and reacted
at 125 °C for 5-8 h. Then the solution was transferred to a 500 mL beaker and saturated sodium
bicarbonate aqueous solution was slowly dropped until no bubble was produced. Subsequently, ethyl
acetate (3 x 30 mL) was added to extract organics. The combined organic layer was washed with NaCl
aqueous solution and dried with Na,SO,. After that, organic layer was concentrated to afford residue,
which was purified by column chromatography on silica gel to obtain high purity substituted maleimide

(yellow solid) in good yields (Yields: 80-94 %).

4. General Experimental Procedure

COOH [o] 2
CsPbBr; nanocrystals HN —
NH  + [ N-R, - N=R,
EA, 1 h, rt, air,
Ry o 10 W Blue LEDs R o
1
1 2 3

Compounds 3 were prepared according to the General Procedure 3 (GP3): CsPbBr; powders

capped with BF4- (3.0 mg) were added into a 25 mL reaction tube with magnetic stirring bar, which




were dispersed in 3.0 mL EA. Then substrates 1 (0.4 mmol, 2.0 equiv) and 2 (0.2 mmol, 1.0 equiv) were
introduced into the above solution. The reaction tube was sealed and irradiated by 10 W blue LEDs (A
= 450 nm) at room temperature for 1.0 h. After reaction, the solvent was removed by rotary
evaporation and the crude product was purified by column chromatography on silica gel (petroleum

ether/ethyl acetate = 5/1) to give the target product 3.

5. Photoelectrochemical Measurements

All measurements were conducted on a Zennium electrochemical workstation (Germany, Zahner
Company) in a conventional three-electrode system. The resultant electrode served as the working
electrode, platinum as the counter electrode and Ag/AgCl electrode as the reference electrode. A 0.1
M TBAPF (tetrabutylamine hexafluorophosphate) acetonitrile solution was used as the electrolyte. The
working electrodes were prepared by adding 10 pL Nafion (5%) aqueous solution into a 2 mL CsPbBr;
NCs (3.5 mg) ethyl acetate solution. Then 200.0 plL obtained solution was dropped onto a clean ITO
conductive glass with an active area of about 1.0 cm?, which was washed by ultrasonication with
distilled water, ethanol, and isopropanol for 15 s, and dried in a vacuum oven before experiments. The
obtained electrode was dried under inert atmosphere. For photocurrent response versus time (i-t
curve), a 300 W Xe lamp was used as the light source with switching on and off mode. The
electrochemical impedance spectroscopy (EIS) results were recorded at the open circuit potential using

a frequency ranged from 10° Hz to 102 Hz.

6. DFT Calculations

Density functional theory was performed using the Vienna ab initio simulation package (VASP).”-8
Exchange-correlation interactions were described by the generalized gradient approximation (GGA) in
the form of Perdew-Burke-Ernzerhof (PBE) function,® and the ion-electron interactions were treated by
the projector augmented wave (PAW) method.!° The cut-off energy for the plane wave basis was set
to be 400 eV. Brillouin zone integration was sampled with a K-mesh of 0.04 2m/A for structure
optimization. The convergence criteria for energy and force were set to be 107 eV/atom and 0.02 eV/A,

respectively. Dimer method was used to find the transition states.'% 12

To build the adsorption models, the CsPbBr; (002), CsPbBr; (110) and CsPbBr; (112) planes were

initially cleaved and expanded into 2 x 2 supercell. The CsPbBr; (012) plane was initially cleaved and




expanded into 3 x 1 supercell. The CsPbBr;(100) plane was cleaved, and the resultant was the same to

that of (002) plane. Vacuum above lattice plane was set to be 14 A.




7. The selected area fast Fourier transform (FFT) pattern of Cube
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Fig. S1 FFT pattern (a) and the alternative atomic model (b) of Cube.




8. UV-vis absorption spectra of Cube and Poly
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Fig. S2 UV-vis absorption spectra of Cube and Poly dispersed in hexane solution at room temperature.




9. PL spectra of Cube and Poly
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Fig. S3 PL spectra of Cube and Poly dispersed in hexane solution at room temperature.




10. FFT pattern of Poly

Fig. S4 FFT pattern (a) and the alternative atomic model (b) of Cube.




11. Full XPS spectra of Cube and Poly
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Fig. S5 Full XPS spectra of Cube and Poly.




12. High-resolution XPS spectrum of Cube and Poly
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Fig. S6 High-resolution XPS spectrum of (a) Cs 3d, (b) Pb 4f and (c) Br 3d for Cube and Poly.




13. XRD patterns of Cube and Poly
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Fig. S7 XRD patterns of Cube and Poly.




14. FT-IR spectra of Cube
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Fig. S8 FT-IR spectra of Cube before (Cube-original) and after ligand exchange (Cube-exchange).




15. Table S1. The ratio of 1a and 2a in cascade cyclization

coon
10 W blue LEDs, Cube < >
i _Q “EAatoh &
1a
Entry Ratio of 1a:2a Yield of 3a (%)
1 1.0:1 60
2 1.5:1 63
3 2.0:1 75
4 2.5:1 75
5 3.0:1 78

Reaction conditions: 1a, 0.2 mmol 2a, and Cube (6.0 mg) which was dispersed in 3.0 mL EA, were added
into 25 mL reaction tube under room temperature. The solution was irradiated by 10 W blue LEDs (A =
450 nm) for 1.0 h. Yields were determined by 'H NMR using 1,3,5-trimethoxybenzene as an internal

standard based on 2a.




16. Table S2. The amount optimization of Cube for cascade cyclization

Entry Amount (mg) 3aYield (%)
1 1.0 18
2 3.0 75
3 6.0 75

Reaction conditions: 0.4 mmol 1a, 0.2 mmol 2a, and Cube which was dispersed in 3.0 mL EA, were
added into 25 mL reaction tube under room temperature. The solution was irradiated by 10 W blue
LEDs (A = 450 nm) for 1.0 h. Yields were determined by 'H NMR using 1,3,5-trimethoxybenzene as an

internal standard based on 2a.




17. Tauc plots of Cube and Poly
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Fig. S9 The corresponding Tauc plots of (a) Cube and (b) Poly. As shown in Fig. S9, Cube exhibits a wide bandgap

of ~2.42 eV, while Poly possesses a narrower bandgap of ~2.35 eV.




18. Calculation of VB band potentials of Cube and Poly
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Fig. $10 High-resolution VB XPS spectra of (a) Cube and (b) Poly. As shown in Fig. S10, the valence bands of Cube

and Poly are +1.76 and +1.75 V vs NHE, respectively.




19. Band structure of Cube and Poly
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Fig. S11 Schematic illustration for the band structure of (a) Cube and (b) Poly. As shown in Fig. S11, it is both

thermodynamically feasible for the redox reaction.




20. Table S3. Fitted parameter of PL lifetime in Fig. 3b

Sample B, B, B; T,/ ns T,/ ns i/ ns t/ns
Cube 1492.64 323.55 138.73 3.79 15.19 100 60.67
Poly 2315.4 414.60 95.76 0.19 6.73 71.14 50.12

The emission decays of Cube and Poly were studied and the decay curves for the samples were well

fitted with three-exponential function Y(t) based on nonlinear least-squares, using the following

equation:

Y(¢t)=B exp(—t/ 1)+ B,exp(-t/,)+ B, exp(—t/ ;)

Where B,, B,, B3 are fractional contributions from time-resolved emission decay lifetime Ty, T,, T3 as

shown in Table S3, which are assigned to (1) trap-assisted exciton recombination (ty), (2) exciton

recombination (1), and (3) free-carrier recombination (t3). The average lifetime t could be obtained

from the following equation:

<T>

2 2 2
_ Bz + B, + B,

Bt + B, + B,




21. Table S4. Resistance values in fitted equivalent circuit of EIS plots for Cube and Poly

Sample Rs (Q) Rct (Q)

Cube 21.5 2319

Poly 23.46 3927




22. Time-resolved PL spectra of Cube and Poly before ligand exchange

10004 4

Counts

100 200 300 400 500
Time (ns)

Fig. S12 Time-resolved PL spectra of Cube and Poly before ligand exchange (excitation laser: 405 nm).




23. Table S5. Fitted parameter of PL lifetime in Fig. S12

Sample B, B, B; T,/ ns T,/ ns i/ ns t/ns
Cube 339.61 578.36 205.88 4.02 37.89 126.49 83.7
Poly 775.60 273.99 20.43 2.84 11.53 50.00 14.7

The emission decays of Cube and Poly were studied and the decay curves for the samples were well

fitted with three-exponential function Y(t) based on nonlinear least-squares, using the following

equation:

Y(¢t)=B exp(—t/ 1)+ B,exp(-t/,)+ B, exp(—t/ ;)

Where B,, B,, B3 are fractional contributions from time-resolved emission decay lifetime Ty, T,, T3 as

shown in Table S5. The average lifetime t could be obtained from the following equation:

2 2 2
_ Bz + B, + B,

<T>

Bt + B, + B,




24. Electrochemical measurements of Cube and Poly with organic ligands
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Fig. S13 (a) Photocurrent responses and (b) EIS Nyquist plots of Cube and Poly with organic ligands (inset is the

equivalent curve), respectively.




25. Table S6. Resistance values in fitted equivalent circuit of EIS plots for Cube and Poly with

organic ligands

Sample Rs (Q) Rct (Q)

Cube 26.56 18733

Poly 32.24 26976




26. HRMS spectrum of reaction system with addition BHT
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Fig. S14 Mass spectrum (ESI, positive) of reaction system with addition BHT (2.0 equiv) upon 1.0 h irradiation.

HRMS (ESI+) Calcd. for Cy,H3,NO [M + H]*: 326.2478, Found: 326.2486. The result indicated the formation of

phenylaminomethyl radical.




27. Proposed mechanism of 1a reacted with 2a
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Fig. S15 The detailed mechanism of 1a reacted with 2a to produce 3a.

H+




28. The adsorption models of 1a and intermediate | on various facets

(@)

Fig. $16 The adsorption behavious of substrate 1a (a-e) and intermediate | (f-j) on various facets of CsPbBr;

nanocrystals.




29. Table S7. Calculated adsorption energies of 1a on series facets of NC

Facet Adsorption energy (eV)
(110) -0.26
(002) -0.38
(112) 0.07
(012) -0.03
(100) -0.38




30. Table S8. BET surface areas of Cube and Poly

Sample BET surface area (m? g)

Cube 0.65

Poly 1.50




31. Table S9. Calculated adsorption energies of intermediate | on series facets

Facet Adsorption energy (eV)
(110) -1.88
(002) -0.89
(112) -2.46
(012) -2.35
(100) -0.89




32. Characterization Data for All Compounds

2-phenyl-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]quinoline-1,3(2H)-dione (3aa)

0

N—Ph

0]

o

The compound was prepared according to GP3 and isolated as a yellow solid.
'H NMR (400 MHz, Chloroform-d) & 7.54 (d, / = 7.6 Hz, 1H), 7.44-7.40 (m, 2H),
7.37-7.33 (m, 1H), 7.27-7.25 (m, 2H), 7.11 (td, / = 8, 1.2 Hz, 1H), 6.87 (td, J = §,
0.8 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 4.15 (d, J = 9.2 Hz, 1H), 3.75 (dd, J = 11.6,
3.2 Hz, 1H), 3.55-3.51 (m, 1H), 3.30 (dd, J= 11.6, 4.4 Hz, 1H). 33C NMR (101 MHz,

Chloroform-d) 6 177.5, 175.8, 146.0, 132.0, 130.6, 129.1, 128.7, 128.5, 126.5, 120.3, 116.9, 115.9, 43.3,
41.7, 41.6. The spectral data matched those reported previously.'3
8-methyl-2-phenyl-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]quinoline-1,3(2H)-dione (3ba)

o

N
N—Ph

et

The compound was prepared according to GP3 and isolated as a white solid. *H
NMR (400 MHz, Chloroform-d) 6 7.44-7.40 (m, 2H), 7.36-7.33 (m, 2H), 7.27-7.25
(m, 2H), 6.93-6.91 (m, 1H), 6.53 (d, J = 8.0 Hz, 1H), 4.11 (d, /= 9.2 Hz, 1H), 3.74
(dd,/=11.2,3.2 Hz, 1H), 3.53-3.49 (m, 1H), 3.27 (dd, J = 11.2, 4.4 Hz, 1H), 2.27(s,
3H). 3C NMR (101 MHz, Chloroform-d) 6 177.7, 176.0, 143.8, 132.1, 130.8,
129.5, 129.2, 129.1, 128.6, 126.5, 116.8, 115.8, 43.4, 42.0, 41.6, 20.7. The

spectral data matched those reported previously.3
8-(tert-butyl)-2-phenyl-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]quinoline-1,3(2H)-dione (3ca)

O

N
N—Ph

et

Bu

The compound was prepared according to GP3 and isolated as a yellow solid.
IH NMR (400 MHz, Chloroform-d) & 7.56 (d, J = 2.0 Hz, 1H), 7.44-7.40 (m, 2H),
7.37-7.33 (m, 1H), 7.29-7.25 (m, 2H), 7.14 (dd, J = 8.4, 2.4 Hz, 1H), 6.57 (d, J =
8.4 Hz, 1H), 4.15 (d, J = 9.2 Hz, 1H), 3.72 (dd, / = 11.2, 3.6 Hz, 1H), 3.53-3.49 (m,
1H), 3.30 (dd, J = 11.2, 4.4 Hz, 1H), 1.30 (s, 9H). 3C NMR (101 MHz,
Chloroform-d) § 177.6, 175.9, 143.5, 143.1, 132.1, 129.1, 128.6, 127.4, 126.5,

125.5, 116.3, 115.5, 43.3, 41.9, 41.7, 34.2, 31.6. HRMS (ESI) calcd for Cy;H;,N,0, [M+H]* 335.1754,

found 335.1765.

8-methoxy-2-phenyl-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]quinoline-1,3(2H)-dione (3da)

(@)

N
N—Ph

has

OMe

The compound was prepared according to GP3 and isolated as a white solid. 'H
NMR (400 MHz, Chloroform-d) 6 7.45-7.40 (m, 2H), 7.38-7.33 (m, 1H), 7.28-7.26
(m, 2H), 7.12-7.11 (m, 1H), 6.72 (dd, J = 8.8, 2.8 Hz, 1H), 6.56 (d, J = 9.2 Hz, 1H),
4.11 (d, J=9.2 Hz, 1H), 3.78 (s, 3H), 3.71 (dd, /= 11.2, 3.2 Hz, 1H), 3.51-3.47 (m,
1H), 3.24 (dd, J = 11.2, 4.4 Hz, 1H). 3C NMR (101 MHz, Chloroform-d) 6 177.6,
175.8, 153.6, 140.0, 132.0, 129.1, 128.7, 126.5, 117.7, 116.8, 115.3, 114.9, 55.8,

43.3,42.3,41.9. HRMS (ESI) caled for CigH16N,03 [M+H]* 309.1234, found 309.1241.

2-phenyl-8-(trifluoromethoxy)-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]quinoline-1,3(2H)-dione (3ea)

O

N—Ph

I
—<: 3\:2
o

OCF;

The compound was prepared according to GP3 and isolated as a yellow paste
solid. *H NMR (400 MHz, Chloroform-d) 6 7.44-7.40 (m, 3H), 7.37-7.33 (m, 1H),
7.25-7.23 (m, 2H), 6.95 (dd, J = 8.8, 2.0 Hz, 1H), 6.56 (d, J = 8.8 Hz, 1H), 4.08 (d,
J =9.6 Hz, 1H), 4.00 (s, 1H), 3.67 (dd, J = 11.2, 2.4 Hz, 1H), 3.49-3.45 (m, 1H),
3.23 (dd, J=11.6, 4.4 Hz, 1H). 3C NMR (101 MHz, Chloroform-d) 6 177.2, 175.2,
144.9,141.9 (q,J=2.0 Hz), 131.8, 129.2, 128.8, 126.4, 123.5, 121.7, 120.7 (q, J

=257.3 Hz), 117.5, 116.3, 42.8, 41.5, 41.3. °F NMR (376 MHz, Chloroform-d) 6 -58.17. HRMS (ESI) calcd




for C1gH13F3N,05 [M+H]* 363.0951, found 363.0947.

8-fluoro-2-phenyl-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]lquinoline-1,3(2H)-dione (3fa)

@) The compound was prepared according to GP3 and isolated as a reddish yellow

HN solid. 'H NMR (400 MHz, Chloroform-d) § 7.44-7.40 (m, 2H), 7.37-7.34 (m, 1H),
N—Ph 7.26-7.24 (m, 3H), 6.84-6.80 (m, 1H), 6.56-6.52 (m, 1H), 4.07 (d, J = 9.2 Hz, 1H),

0 3.70-3.67 (m, 1H), 3.49-3.46 (m, 1H), 3.25-3.20 (m, 1H). 3C NMR (101 MHz,
Chloroform-d) § 177.3, 175.4, 156.8 (d, J = 239.5 Hz), 142.4 (d, /= 2.5 Hz), 131.9,

F 129.2,128.8, 126.5, 118.0 (d, J = 7.8 Hz), 116.9 (d, / = 23.3 Hz), 116.6 (d, /= 7.8

Hz), 115.5 (d, J = 22.8 Hz), 43.0, 42.1, 41.6. °F NMR (376 MHz, Chloroform-d) 6 -123.68. HRMS (ESI)
calcd for C;7H13FN,0, [M+H]* 297.1034, found 297.1045.

8-chloro-2-phenyl-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]quinoline-1,3(2H)-dione (3ga)

@] The compound was prepared according to GP3 and isolated as a yellow solid.

HN IH NMR (400 MHz, Chloroform-d) 6 7.52-7.51 (m, 1H), 7.45-7.40 (m, 2H), 7.38-
N=Ph 7.34 (m, 1H), 7.26-7.24 (m, 2H), 7.05 (dd, J = 8.4, 2.4 Hz, 1H), 6.55 (d, / = 8.4 Hz,

0O 1H), 4.10 (d, J = 9.2 Hz, 1H), 3.74 (dd, J = 11.6, 3.2 Hz, 1H), 3.54-3.49 (m, 1H),

3.28 (dd,J=11.2, 4.4 Hz, 1H). 3C NMR (101 MHz, Chloroform-d) 6 177.2, 175.3,

Cl 144.7,131.9,130.2, 129.2, 128.8, 128.6, 126.5, 124.7, 118.2, 116.9, 43.0, 41.6,

41.4. HRMS (ESI) caled for C;7H14CIN,0, [M+H]* 313.0738, found 313.0750.

8-bromo-2-phenyl-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]quinoline-1,3(2H)-dione (3ha)

0] The compound was prepared according to GP3 and isolated as a yellow solid.

HN 1H NMR (400 MHz, Chloroform-d) & 7.67-7.66 (m, 1H), 7.46-7.41 (m, 2H), 7.39-
N=Ph 5 35 (m, 1H), 7.27-7.25 (m, 2H), 7.20 (dd, J = 8.4, 2.0 Hz, 1H), 6.52 (d, J = 8.4 Hz,

O 1H), 4.11 (d, J = 9.2 Hz, 1H), 3.76 (dd, J = 11.6, 3.2 Hz, 1H), 3.53-3.51 (m, 1H),

3.30(dd, J=11.2, 4.4 Hz, 1H). 3C NMR (101 MHz, Chloroform-d) § 177.1, 175.3,

Br 145.1,133.1, 131.9, 131.4, 129.2, 128.8, 126.5, 118.7, 117.4, 111.9, 43.0, 41.5,

41.3. HRMS (ESI) calcd for C;7H,3BrN,0, [M+H]* 337.0233, found 357.0243.

2-(p-tolyl)-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]quinoline-1,3(2H)-dione (3ab)
0] The compound was prepared according to GP3 and isolated as a yellow
HN solid. 'TH NMR (400 MHz, Chloroform-d) & 7.54 (d, J = 7.6 Hz, 1H), 7.24-
N4®7 7.22 (m, 2H), 7.14-7.12 (m, 2H), 7.11-7.09 (m, 1H), 6.87 (td, /= 7.6, 0.8
0 Hz, 1H), 6.62 (dd, J = 7.6, 0.8 Hz, 1H), 4.14 (d, J = 9.2 Hz, 1H), 3.74 (dd,
J=11.2, 3.2 Hz, 1H), 3.53-3.49 (m, 1H), 3.30 (dd, J = 11.2, 4.4 Hz, 1H),
2.35 (s, 3H). 13C NMR (101 MHz, Chloroform-d) § 177.7, 176.0, 146.1, 138.7, 130.6, 129.8, 129.4, 128.5,

126.3, 120.2, 116.9, 115.8, 43.3, 41.7, 41.6, 21.3. HRMS (ESI) calcd for Ci5H:6N,0, [M+H]* 293.1284,
found 293.1284.

2-(4-(tert-butyl)phenyl)-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]quinoline-1,3(2H)-dione (3ac)
9] The compound was prepared according to GP3 and isolated as a
HN yellow solid. *H NMR (400 MHz, Chloroform-d) 6 7.54 (d, J = 7.6 Hz,
NOtBU 1H), 7.46-7.42 (m, 2H), 7.21-7.17 (m, 2H), 7.10 (td, J = 8.4, 1.2 Hz,
o) 1H), 6.86 (td, J = 7.6, 0.8 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 4.13 (d, J =

9.6 Hz, 1H), 3.72 (dd, J = 11.2, 3.2 Hz, 1H), 3.52-3.48 (m, 1H), 3.27
(dd, J = 11.2, 4.4 Hz, 1H), 1.31 (s, 9H). 13C NMR (101 MHz, Chloroform-d) & 177.7, 176.0, 151.6, 146.1,




130.6, 129.3,128.4,126.1, 125.9, 120.1, 116.8, 115.7, 43.3, 41.6, 41.5, 34.8, 31.3. HRMS (ESI) calcd for
C,1H2,N,0, [M+H]* 335.1754, found 335.1753.

2-(4-methoxyphenyl)-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]quinoline-1,3(2H)-dione (3ad)

0] The compound was prepared according to GP3 and isolated as a

HN / yellow solid. *H NMR (400 MHz, DMSO-de) 6 7.34 (d, J = 7.6 Hz, 1H),

N@O 7.12-7.08 (m, 2H), 7.04-7.02 (m, 1H), 7.01-6.98 (m, 2H), 6.73-6.67 (m,

o) 2H), 4.16 (d, J = 9.2 Hz, 1H), 3.76 (s, 3H), 3.60-3.56 (m, 1H), 3.45 (dd,

J=11.6,3.2 Hz, 1H), 3.10(dd, /= 11.6, 4.8 Hz, 1H). 13C NMR (101 MHz,

DMSO-d¢) 6 178.1, 176.5, 158.9, 147.2, 130.2, 128.1, 127.6, 125.0, 118.2, 116.9, 115.3, 114.2, 55.4,
42.7,41.1, 40.9. HRMS (ESI) caled for CigH16N,03 [M+H]* 309.1234, found 309.1242.

2-(4-chIorophenyl)-3a,4,5,9b-tetrahydro-lH-cycIopenta[c]quinoline-1,3(2H)-dione (3ae)
The compound was prepared according to GP3 and isolated as a
yellow solid. *H NMR (400 MHz, Chloroform-d) & 7.53 (d, J = 7.2 Hz,
O 1H), 7.42-7.38 (m, 2H), 7.26-7.22 (m, 2H), 7.15-7.11 (m, 1H), 6.88 (td,
J=7.6,1.2 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 4.16 (d, J = 9.6 Hz, 1H), 3.77
(dd, J=11.2, 2.8 Hz, 1H), 3.56-3.52 (m, 1H), 3.31 (dd, /= 11.2, 4.4 Hz,
1H). 13C NMR (101 MHz, Chloroform-d) & 177.3, 175.6, 146.1, 134.4, 130.6, 130.5, 129.3, 128.6, 127.7,
120.3, 116.7, 115.9, 43.5, 41.7, 41.6. HRMS (ESI) calcd for C;7H,3CIN,O, [M+H]* 313.0738, found
313.0746.
2-(4-bromophenyl)-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]quinoline-1,3(2H)-dione (3af)
o) The compound was prepared according to GP3 and isolated as a
HN yellow solid. *H NMR (400 MHz, Chloroform-d) 6 7.56-7.54 (m, 1H),
NOBF 7.53-7.51 (m, 2H), 7.19-7.17 (m, 1H), 7.16-7.15 (m, 1H), 7.11 (td, J =
5 7.6, 1.2 Hz, 1H), 6.87 (td, J = 7.6, 1.2 Hz, 1H), 6.62 (dd, J = 8.0, 1.2 Hz,
1H), 4.15 (d, J = 9.2 Hz, 1H), 3.76 (dd, J = 11.6, 3.2 Hz, 1H), 3.55-3.50
(m, 1H), 3.30 (dd, J = 12.0, 4.0 Hz, 1H). 3C NMR (101 MHz, Chloroform-d) § 177.3, 175.6, 146.1, 132.3,
131.0, 130.6, 128.6, 128.0, 122.5, 120.4, 116.7, 115.9, 43.5, 41.7, 41.6. HRMS (ESI) calcd for
Cy7H13BrN,0, [M+H]* 357.0233, found 357.0244.
4-(1,3-dioxo-2,3,3a,4,5,9b-hexahydro-1H-cyc|openta[c]quinoIin-2-yI)benzonitriIe (3ag)
The compound was prepared according to GP3 and isolated as a
yellow solid. *H NMR (400 MHz, Chloroform-d) 6 7.72-7.70 (m, 2H),
O 7.52-7.47 (m, 3H), 7.14-7.10 (m, 1H), 6.88 (td, J = 7.6, 0.8 Hz, 1H),
6.63 (d, /=8.0 Hz, 1H), 4.19 (d, J = 9.6 Hz, 1H), 3.78 (dd, /= 11.2, 2.8
Hz, 1H), 3.59-3.55 (m, 1H), 3.30 (dd, J = 11.6, 4.4 Hz, 1H). 13C NMR

(101 MHz, Chloroform-d) 6 176.9, 175.2, 146.1, 136.0, 132.9, 130.5, 128.8, 126.9, 120.5, 118.2, 116.4,
116.0, 112.1, 43.5, 41.7, 29.8. HRMS (ESI) calcd for C3gH13N30, [M+H]* 304.1080, found 304.1080.

2-benzyl-3a,4,5,9b-tetrahydro-1H-cyclopenta[c]quinoline-1,3(2H)-dione (3ah)

The compound was prepared according to GP3 and isolated as a white

0
HN solid. IH NMR (400 MHz, Chloroform-d) & 7.48 (d, J = 7.6 Hz, 1H), 7.30-7.22
N (m, S5H), 7.08 (td, J = 7.6, 1.2 Hz, 1H), 6.54 (td, J = 7.6, 1.2 Hz, 1H), 6.58 (dd,
5 J=8.0,1.2 Hz, 1H), 4.63 (q, J = 14.4 Hz, 2H), 3.98 (d, J = 9.2 Hz, 1H), 3.63

(dd, J =11.2, 3.2 Hz, 1H), 3.36-3.32 (m, 1H), 3.22 (dd, J = 11.2, 4.4 Hz, 1H).
13C NMR (101 MHz, Chloroform-d)  178.2, 176.5, 146.0, 135.7, 130.5, 128.7, 128.5, 128.4, 127.9, 120.2,




117.1, 115.8, 43.4,42.9, 41.7, 41.5. The spectral data matched those reported previously.!3
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