Supporting Information

Single atom Cu anchored graphitic-C₃N₅ for photocatalytic selective oxidation of biomass-derived furfurals to maleic anhydride

Kaihua Li^a, Weihao Zhou^a, Xincheng Cao^d, Yamei Lin^c, Kui Wang^b*, Jianchun Jiang^b, Guo-Ping Lu^{a,c}*

^a School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China

^b Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, China

^c International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China

^d College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China

* Corresponding author, glu@njust.edu.cn; wangkui@caf.ac.cn

Figure S1 XRD patterns of C₃N₄, C₃N₅ and Cu₁@C₃N₅-1

Figure S2 Isothermal adsorption-desorption curve of Cu₁@C₃N₅-1

Figure S3 FT-IR spectra of C_3N_5 and $Cu_1@C_3N_5-1$

Table S1	The ICP	results of	$Cu_1(a)C_3N_5-1$
----------	---------	------------	-------------------

Catalyst	Mass content of Cu (mg/kg)
Cu ₁ @C ₃ N ₅ -1	18381.6
$Cu_1@C_3N_5-1^a$	18114.8

^a The recycled catalyst after 8 runs

Table S2	The elemental	analysis results	s of $Cu_1(a)C_3N_5-1$
		2	10000

Quality (mg)	Name	N (%)	C (%)	H (%)	O (%)
2.001	$Cu_1@C_3N_5-1$	61.4	34.61	1.537	1.866

Figure S4 Comparison of experimentally obtained spectra and the corresponding best fit calculations of Cu foil (a, c) and Cu₁@C₃N₅-1 (b,d). EXAFS spectra (a, b), Fourier-transformed EXAFS spectra (c, d).

Sample	Path	CN ^a	$R(\text{\AA})^b$	σ^2 (Å ²) ^c	$\Delta E_0(\mathrm{eV})^d$	R factor
Cu K-edge ($S_0^2=0.867$)						
Cu foil-1	Cu-Cu	12*	2.542±0.003	0.0089	4.4	0.0031
Cu-1-tran	Cu-N	2.9±0.2	$1.904{\pm}0.004$	0.0070	3.4	0.0080

Table S3 EXAFS data fitting results of Samples.

^{*a*}*CN*, coordination number; ^{*b*}*R*, the distance between absorber and backscatter atoms; ^{*c*} σ^2 , the Debye Waller factor value; ^{*d*} ΔE_0 , inner potential correction to account for the difference in the inner potential between the sample and the reference compound; *R* factor indicates the goodness of the fit. *S*0² was fixed to 0.867, according to the experimental EXAFS fit of Cu foil by fixing *CN* as the known crystallographic value. * This value was fixed during EXAFS fitting, based on the known structure of Cu. Fitting conditions: *k* range: 2.0 - 11.4; *R* range: 1.0-2.5; fitting space: R space; *k*-weight = 3. A reasonable range of EXAFS fitting parameters: 0.800 < S_0^2 < 1.000; *CN* > 0; σ^2 > 0 Å²; $|\Delta E_0| < 10$ eV; *R* factor < 0.02.

Entry	Solvent	Yield of MA (%)			
1	water	0			
2	ethanol	0			
3	methanol	0			
3	acetone	11			
4	ethyl acetate	24			
5	acetonitrile	98			
6	MeOH	0			
7	acetonitrile ^b	18			
8	acetonitrile ^c	40			

Table S4 The solvent effects on the oxidation of HMF^a

^a Reaction conditions: 126 mg HMF (1 mmol), 20 mg catalyst, 2 mL solvent, light source: 415 nm LED (12 W), 12 h, 40 °C. ^b The use of 1 equiv. MeOH. ^c The use of 0.5 equiv. MeOH.

Figure S5 XRD patterns of Cu1@C3N5-1 and its recycled sample after 8 runs

Figure S6 Diffuse-reflectance UV-vis spectra of C₃N₄, C₃N₅ and Cu₁@C₃N₅-1.

Figure S7 O_2 adsorption on (a) C_3N_5 and (b) $Cu_1@C_3N_5-1$. Grey, blue, red and pink balls represent carbon, nitrogen, oxygen and copper atoms, respectively