Supporting Information for:

Robust energy storage density and negative capacitance in antiferroelectric heterostructures grown by atomic layer epitaxy

*Yu-Sen Jiang^a, Yi-Hsuan Chao^a, Makoto Shiojiri^b, Yu-Tung Yin^a, and Miin-Jang Chen^{a, b, c, d**}

^a Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, R.O.C.

^b Kyoto Institute of Technology, Kyoto 606-8585, Japan

^c Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan, R.O.C.

^d Graduate School of Advanced Technology, National Taiwan University, Taipei 10617, Taiwan, R.O.C.

* Authors to whom any correspondence should be addressed: *E-mail:* mjchen@ntu.edu.tw

Figure S1. The epitaxial ZrO_2 /TiN heterostructure was grown on a 6-inch sapphire wafer by atomic layer epitaxy, demonstrating the viability of large-area growth for the mass production of energy storage devices.

Figure S2. A unit cell of tetragonal ZrO_2 . The (110) and (101) planes are depicted in purple and green, respectively, intersecting at an angle of 54.5° with each other. The pole axis is the normal of the lattice plane and is indicated by an arrow of the same color. The AFE polar axis of ZrO_2 is along the 110 pole axis, which is the [110] axis in the tetragonal lattice.

Figure S3. Dependence of energy storage efficiency on the volume fraction of T-ZrO₂, as derived from the *P*-*V* curves in Figure 3.

Figure S4. (a) The pole figure of the $T_{0.75}P_{0.25}$ sample at Bragg's angle of TiN(220). **(b)** The stereographic projections of TiN at the (111) pole.

Material and Structure	U _{ESD} (J/cm ³)	P _{max} (μC/cm ²)	Reference
W/ZrO ₂ /TiN	118.6	47.7	This work
TiN/HZO/TiN	46	>30	15
Pt/TiO ₂ /ZrO2/TiO ₂ /Pt	94	>40	28
Cr/TiO ₂ /ZrO ₂ /TiO ₂ /Pt	114.5	>40	29
Pt/HZO/Al ₂ O ₃ /HZO/TiN	87.66	41.3	31
W/A1:HZO/W	101.4	>30	32
W/HfO2/ZrO2/HfO2/W	32	~28	33
TiN/Al:HZO/TiN	53	~22	34
TiN/Al:HfO ₂ /TiN	35	~17	35
TiN/ZrO ₂ /TiN	80.2	41.3	36
Mo/ZTSO/Mo	68.59	-	37
W/HAO/W	63.7	-	38
TiN/HZO/Al ₂ O ₃ /HZO/TiN	55	~32	39
Au/HAO/ZrO ₂ /Pt	54.3	-	40
Pt/Al:HfO ₂ /Pt	63	-	41
TiN/La:HZO/TiN	50	~30	42
TiN/Si:HZO/TiN	53	-	43
TiN/HZO/TiN	55	~31	44
TiN/Si:HZO/TiN	40	~29	45
TiN/Si:HZO/TiN	61.2	~40	46
TiN/Si:HfO ₂ / Si	~40	~30	47
TiN/HZO/TiN	115	~31	48

 Table S1. Benchmark of energy storage density in dielectric capacitors.