Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

1	Supporting Information
2	Photoelectron "Bridge" is Introduced to Realize the Precise
3	Transport of C₃N₅-CoPc Interface Charge for Efficient
4	Photocatalytic H ₂ O ₂ Production
5 6	Ruixin Chen ¹ , Wei Gan ¹ , Jun Guo ² , Yuqing Lu ¹ , Sheng Ding ¹ , Run Liu ¹ , Shouguo Wang ¹ , Miao Zhang ¹ *, Qingqing Yang ¹ *, Zhaoqi Sun ¹ *
7	1. School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China.
8	2. School of Electronic Engineering, Huainan Normal University, Huainan, 232038, PR China.
9	*Corresponding author: <u>zhmiao@ahu.edu.cn; qqyang@ahu.edu.cn; szq@ahu.edu.cn</u> .

10 Text S1. Materials characterizations

The morphology of the samples was studied by field-emission scanning electron 11 microscope (FE-SEM, Hitachi regulus 8230) and transmission electron microscope 12 (TEM, JEM-2100) with an accelerating voltage of 200 kV. X-ray diffractometer (XRD, 13 MAC, M18XHF) with copper K α radiation ($\lambda = 1.5406$ Å) as the radiation source were 14 used to examined the crystal structure and phases of materials. The N2 15 adsorption/desorption curve was determined by BET measurements using a 16 Micromeritics ASAP2460 surface area analyzer. The X-ray photoelectron spectroscopy 17 (XPS) measurements were performed with ESCALAB-250 spectrometer to analyze the 18 elemental composition of the sample surface. The UV-vis diffuse reflectance spectra 19 were performed by a Shimadzu UV-2550 spectrometer. The photoluminescence (PL) 20 emission spectra were measured on a luminescence spectrophotometer (Hitachi FL-21 7000) (370 nm excitation). Fourier transform-infrared spectrometer (FT-IR) 22 measurements were performed on a Vertex80 + hyperion 2000. Atomic Force 23 24 Microscope (AFM) images were measured on Hitachi AFM 5500 M. The electron 25 paramagnetic resonance (EPR) spectra were recorded on a Bruker EMX Plus 26 spectrometer.

27 Text S2. Photoelectrochemical Measurements

The transient photocurrent response, Electrochemical impedance spectroscopy (EIS), and Mott-Schottky plot were tested on three-electrode CHI660E electrochemical workstation with the photocatalysts as the working electrodes, saturated calomel electrode as reference electrode, and platinum foil electrode as counter electrode in 0.5 M Na₂SO₄ solution. The working electrodes were prepared by dropping the sample suspension containing 10 mg powder and 200 μ L ethanol onto the cleaned FTO conductive glass (1×1 cm²). And a 300 W xenon lamp was used as the irradiation source.

35 Text S3. DFT Calculations

The periodic model was used to simulate the ORR reaction happened on C₃N₅-P-CoPc. The adsorption energy (E_{ads}) of O₂ was calculated as follows:

$$E_{ads}(O_2) = E(*O_2) - E(*) - E(O_2)$$
(4)

Where E (*O₂), E (*), and E (O₂) are the total energy of samples with O₂ adsorbates on the surface, the energy of pristine samples surface and O₂, respectively.

41 The change in Gibbs free energy (ΔG) at each step of the reduction process is 42 calculated by correcting the zero-point energy and entropy of the DFT. And the 43 calculation formula follows equation:

44
$$\Delta G = \Delta E + \Delta ZPE - T\Delta S + \Delta G_{\rm U} \tag{5}$$

45 Where the ΔE is obtained from DFT calculations, ΔZPE is zero-point energy, *T* is 46 298.1 K and ΔS is entropy change. $\Delta G_U = -eU$ is the free energy contribution caused 47 by electrode potential U.

In addition, we provide the list of the reaction equation used of for calculation ofeach step, the equation is as follows:

$$50 O_2 + * \to *O_2 (6)$$

$$*O_2 + H^+ + e^- \rightarrow *OOH \tag{7}$$

$$*OOH + H^+ + e^- \rightarrow *H_2O_2 \tag{8}$$

$$*H_2O_2 \rightarrow *+H_2O_2 \tag{9}$$

54 Where * represents the surface-active structure.

55 Text S4. Apparent quantum yield (AQY) calculation

A 300 W Xe lamp with different bandpass filters of 400, 420, 450, and 500 nm was used to test the AQY of the H_2O_2 photocatalytic production process. The light intensity was adjusted to be 100 W·m⁻², and the irradiated area was 19.625 cm². After irradiation 1 h, the generated H_2O_2 concentration was measured. And the AQY value was calculated by the following formula:

61
$$AQY(\%) = 2 \times \frac{N_{H_2O_2} \cdot N_A \cdot h \cdot c}{I \cdot S \cdot t \cdot \lambda} \times 100\%$$
(1)

62 Where is $N_{\rm H2O2}$ the measured amount of the H₂O₂ (mol), NA is the Avogadro constant

63 $(6.02 \times 10^{23} \text{ mol}^{-1})$, *h* represents the Planck constant $(6.62 \times 10^{-34} \text{ J} \cdot \text{s})$, c is the speed of 64 light $(3 \times 10^8 \text{ m} \cdot \text{s}^{-1})$, S is the irradiation area (19.625 cm²), *I* represents the irradiation 65 intensity (100 W·m⁻²), *t* is the irradiation time (s), and λ represents the wavelength of 66 incident light (m). The corresponding test data are listed in Table S1.

Wavelength (nm)	Irradiation intensity (W m ⁻²)	Irradiation area (cm²)	Irradiation time (s)	H2O2 yield/µmol	AQY/%
400 nm	13.1	19.63	3600	37.00	23.89%
420 nm	14.2	19.63	3600	37.05	21.02%
450 nm	16.2	19.63	3600	34.00	15.78%
500 nm	17.1	19.63	3600	31.50	12.47%

67 **Table S1.** Wavelength-dependent AQY for C_3N_5 -8P-0.9CoPc in potocatalytic H_2O_2 generation.

68 Text S5. Rotating ring-disk electrode (RRDE) measurements

69 RRDE measurements were performed through an electrochemical workstation 70 (Chenhua CHI 760E). The counter electrode, the reference electrode and working 71 electrode were Pt wire, Ag/AgCl electrode and glassy carbon electrode coated with 72 catalysts, respectively. The linear sweep voltammetry (LSV) curves were acquired in 73 an O₂-saturated 0.1 M phosphate buffer solution, the scan rate was 10 mV·s⁻¹, and the 74 speed of the working electrode was set at 1600 rpm.

75 The number of transferred electrons in ORR is calculated as follow:

$$n = 4I_d \left(I_d + \frac{I_r}{N} \right) \tag{2}$$

and the selectivity of H_2O_2 is calculated by the following formula:

78
$$H_2O_2(\%) = 200 \times (I_r/N)/(I_d + I_r/N)$$
 (3)

where I_d is the disk current, I_r is the ring current, N represents the collection efficiency (N=0.37).

81 Text S6. Ultrafast transient absorption (TA) spectroscopy

82 Femtosecond-TA measurements were conducted by using the Helios (Ultrafast

Systems) pump-probe system in collaboration with a regenerative amplified laser 83 system (Spectra physics). The Ti: sapphire amplifier (Solstice Ace) generated an 800 84 nm pulse with a repetition rate of 1 kHz, a duration of 120 fs and an energy of 7 mJ/pulse. 85 86 The output of the amplifier was divided into two parts using a beam splitter, one beam was used to generate the pump pulse with an APOLLO-T (Ultrafast Systems) optical 87 parametric amplifier and the other beam was focused onto sapphire crystal, generating 88 white light supercontinuum (from 420 to 760 nm) for the probe beam. The wavelength 89 and the energy density of pump pulse were 325 nm and 5.0 μ J/cm², respectively. 90

Figure S1. SEM patterns of (a) CoPc, (b) C_3N_5 , (c-d) C_3N_5 -8P-0.9CoPc.

Figure S2. TEM patterns of C₃N₅-8P-0.9CoPc.

Figure S3. XRD patterns of (a) C_3N_5 and C_3N_5 -XCoPc and (b) C_3N_5 -YP-0.9CoPc.

Figure S4. XRD patterns of CoPc, C₃N₅, and C₃N₅-8P-30CoPc.

Figure S6. The model of (a) C₃N₅, (b) CoPc, and (c) C₃N₅-CoPc with side and top view.

Figure S7. The (a) AFM image and (b) corresponding height image of C_3N_5 .

Figure S8. The high-resolution XPS spectra of the C 1s region and (b) the N 1s region for C_3N_5 , CoPc, and C_3N_5 -8P-0.9CoPc, respectively. (c) The high-resolution XPS spectra of P 2p region for C_3N_5 -8P-0.9CoPc. (d) The high resolution XPS spectra of the Co 2p region for CoPc and C_3N_5 -8P-0.9CoPc, respectively.

Figure S9. UV-vis absorption spectra of the photocatalytic.

Figure S10. (a) Absorption edges of C₃N₅ and CoPc; Mott-Schottky plots of (b) C₃N₅, (c) CoPc; (d)
 band structure diagram of C₃N₅ and CoPc.

Note: The band gaps of C_3N_5 and CoPc are estimated using the Tauc formula, as shown 106 in Figure S10a. The calculated band gap values of C₃N₅ and CoPc are 2.33 and 1.94 eV, 107 respectively. The flat band potential $(E_{\rm fb})$ of the samples was measured using Mott-108 Schottky, and the results are shown in Figure S10b-c. Where the curves of C₃N₅ and 109 CoPc show positive and negative slopes, respectively, indicating that they are n-type, 110 p-type semiconductors, respectively. The $E_{\rm fb}$ of C₃N₅ and CoPc were measured to be -111 1.38, -0.88 eV (vs. SCE), respectively, which correspond to -1.14 and -0.64 eV versus 112 NHE, respectively ($E_{\text{NHE}} = E_{\text{SCE}} + 0.24 \text{ eV}$). Generally, the bottom of the conduction band 113 (CB) in n-type semiconductors is 0.1 eV lower than $E_{\rm fb}$, and the bottom of the valence 114 115 band (VB) in p-type semiconductors is 0.1 eV higher than $E_{\rm fb}$. According to the equation of $Eg=E_{VB}-E_{CB}$, the valence band potential (E_{VB}) of C₃N₅ and CoPc were 116 calculated to be 1.09 and 1.40 eV, respectively. The detailed energy band structure of 117 C₃N₅ and CoPc is shown in Figure S10d. 118

Figure S11. (a) PL spectra, (b) TRPL spectra, (c) photocurrent responses, (d) EIS Nyquist plots of
 samples.

Figure S12. (a) PL spectra, (b) EIS Nyquist plots of C₃N₅-4P-0.9CoPc, C₃N₅-8P-0.9CoPc, and C₃N₅-12P-0.9CoPc.

Figure S13. Photocatalytic H_2O_2 production concentration with (a) C_3N_5 -XCoPc, (b) C_3N_5 -YP-0.9CoPc. Note: The effects of different mass ratios of CoPc and phosphate to C_3N_5 on the photocatalytic production of H_2O_2 were evaluated, and the results showed that the photocatalytic H_2O_2 production performance of C_3N_5 -0.9CoPc was higher when the mass ratio of CoPc to C_3N_5 was 0.9%. When the mass ratio of phosphate to C_3N_5 was 0.8%, the H_2O_2 yield of the photocatalyst C_3N_5 -8P-0.9CoPc reached the highest value (3080.3 µmol g⁻¹ h⁻¹). Therefore, the discussion in this paper mainly focuses on the photocatalysts C_3N_5 -0.9CoPc and C_3N_5 -8P-0.9CoPc.

Figure S14. Photocatalytic H_2O_2 yield of C_3N_5 , C_3N_5 -0.9CoPc, and C_3N_5 -8P-0.9CoPc.

Figure S15. Time course of H₂O₂ production under different light intensity of (a) C₃N₅, (b) C₃N₅ 0.9CoPc.

131Figure S16. The fitting concentration-time curves of (a) C_3N_5 , (b) C_3N_5 -0.9CoPc, (c) C_3N_5 -8P-1320.9CoPc.

Figure S18. The (a) photocatalytic decomposition on H₂O₂ of C₃N₅, C₃N₅-0.9CoPc, C₃N₅-8P-0.9CoPc
 and (b) the corresponding reaction rate constants.

Figure S19. Cycle experiments of C_3N_5 -8P-0.9CoPc; (b) XRD pattern and (c) XPS survey spectra of C_3N_5 -8P-0.9CoPc before and after the photocatalytic H₂O₂; (d) TEM image of C_3N_5 -8P-0.9CoPc after the photocatalytic H₂O₂.

Figure S20. (b) The high-resolution XPS spectra of the C 1s, (b) the N 1s, (c) the P 2p, (d) the Co 2p of
 different batches of C₃N₅-8P-0.9CoPc.

Figure S21. Photocatalytic H₂O₂ production performance of different batches of C₃N₅-8P-0.9CoPc.

Figure S22. Photocatalytic H₂O₂ yield of C₃N₅-8P-0.9CoPc under different reaction gases.

Figure S23. EPR signals of \cdot OOH for C₃N₅-8P-0.9CoPc under dark and illumination.

144 Figure S24. (a) The PDOS of C_3N_5 -0.9CoPc, (b) the enlarged part PDOS of C_3N_5 -0.9CoPc.

145 Figure S25. The optimized structures of (a) C₃N₅, (d) CoPc; the partial density of states (PDOS) of (b)

146 C_3N_5 , (e) CoPc; the electrostatic potential spectra of (c) C_3N_5 , (f) CoPc.

Figure S26. The optimized adsorption configurations of O_2 on (a) C_3N_5 , (b) C_3N_5 -0.9CoPc, (c) C_3N_5 -148 8P-0.9CoPc.

Figure S27. The optimized adsorption configurations of (a) O_2 , (b) OOH, (c) HOOH on C_3N_5 ; the optimized adsorption configurations of (a) O_2 , (b) OOH, (c) HOOH on C_3N_5 on C_3N_5 -0.9CoPc.

151 Figure S28. (a) The UV-vis spectrum changes of H₂O₂ concentration, (b) the linear fitting formula of

152 standard H_2O_2 concentration.

Catalysts	Electron donor	Light source	$\begin{array}{c} H_2O_2\\ yield\\ (\mu mol \ g^{-1}\\ h^{-1}) \end{array}$	AQY 420 nm	Cycle/ efficiency	Ref
CdS-O,Sv	10% IPA	300 W	1620.00	17.60	5/87.2%	[1]
Ag/ZnFe2O4/Ag/Ag3PO4	10% MeOH	300 W	103.00	14.53	5/92.1%	[2]
DCN-15A	20% IPA	300 W	96.80	10.70	3/97.5%	[3]
CKCN-0.03	20% EtOH	300 W	152.60	11.86	_/_	[4]
C ₃ N ₄ /AQ	10% IPA	300 W	361.00	1.40	_/_	[5]
DMCR-1NH	9.1% IPA	300 W	2588.00	10.20	5/79.2%	[6]
Ni4%/O0.2tCN	10% EtOH	300 W	2464.00	14.90	5/81.0%	[7]
CN-COF	10% EtOH	300 W	2623.00	9.80	4/91.0%	[8]
COF-BTT-TAPT	90% EtOH	300 W	620.00	0.46	5/55.3%	[9]
CdS NRs-48h	10% IPA	300 W	2974.70	3.33	4/56.2%	[10]
CoP/Co@NPC-15-g- C ₃ N ₄	10% IPA	300 W	940.00	3.00	3/89.0%	[11]
CC ₃ N ₅ -550	10%TeOA	300 W	359.97	12.86	_/_	[12]
P-g-C ₃ N ₄	10% EtOH	300 W	1095.16	/	5/94.0%	[13]
PSI/C ₃ N ₄ -2	10% IPA	350 W	1000.78	/	5/92.6%	[14]
SCN2	10% IPA	300 W	416.70	8.6	5/63.3%	[15]
CNT	10% IPA	AM 1.5	2480.00	18	4/83.0%	[16]
Nv-CNN-3	10% EtOH	300 W	1780.00	10.5	4/92.9%	[17]
NDCN	10% IPA	300 W	476.00	8.2	5/98.7%	[18]

Table S2. Comparison of the H_2O_2 production rate of C_3N_5 -8P-0.9CoPc with reported catalysts

UCN4	10% EtOH	300 W	330.36	219	3/77.7%	[19]
KCT5-5	10% IPA	500 W	890.56	/	3/96.2%	[20]
OCN-500	10% IPA	300 W	1200	10.2	4/96.9%	[21]
g-C ₃ N ₄	10% EtOH	2 kW	125	11.76	_/_	[22]
50Co/CN	10% EtOH	300 W	3200	/	7/93.5%	[23]
DCNS	10% EtOH	300 W	3080	3.51	4/83.2%	[24]
Cu@Au/BiVO ₄	5% MeOH	/	625	/	5/87.9%	[25]
F1-CN-530	10% EtOH	300 W	1893	9	5/89.2%	[26]
KCMCN	0.5%IPA	/	794.8	7.5	5/96.7%	[27]
m-CNNP	10% IPA	/	43.07	0.55	10/71.4%	[28]
C ₃ N ₅ -8P-0.9CoPc	10% EtOH	300 W	3080.30	21.02	5/93.2%	This work

	Table S3. The Bader charge of the photocatalytic.						
_			C ₃ N ₅ -	-CoPc	C ₃ N ₅ -P-CoPc		
	C_3N_5	CoPc	C_3N_5	CoPc	C ₃ N ₅ -P	CoPc	
Charge	360	177	360.03	176.97	360.74	176.26	

Table S4. The Bader charge of Co atom in different samples.

	CoPc	C ₃ N ₅ -CoPc	C ₃ N ₅ -P-CoPc	C ₃ N ₅ -P-CoPc/OO			
Charge	7.94	7.90	7.81	7.69			

Reference

- [1] Y. Q. Tang, F. S. Ye, B. R. Li, T. Y. Yang, F. Y. Yang, J. F. Qu, X. G. Yang, Y. H. Cai, J. D. Hu,
 Small, 2024, 2400376.
- 158 [2] X. Ma, H. F. Cheng, Chem. Eng. J., 2022, 429, 132373.
- [3] L. Shi, L. Q. Yang, W. Zhou, Y. Y. Liu, L. S. Yin, X. Hai, H. Song, J. H. Ye, *Small*, 2018, 14, 160 1703142.
- [4] Y. Xie, Y. X. Li, Z. H. Huang, J. Y. Zhang, X. F. Jia, X. S. Wang, J. H. Ye, *Appl. Catal. B*, 2019,
 265, 118581.
- 163 [5] H.-i. Kim, Y. Choi, S. Hu, W. Y. Choi, J.-H. Kim, *Appl. Catal. B*, 2018, **229**, 121-129.
- 164 [6] P. Das, G. Chakraborty, J. Roeser, S. Vogl, J. Rabeah, A., J. Am. Chem. Soc., 2023, 145, 2975165 2984.
- [7] R. F. Du, K. Xiao, B. Y. Li, X. Han, C. Q. Zhang, X. Wang, Y. Zuo, P. Guardia, J. S. Li, J. B.
 Chen, J. Arbiol, A. Cabot, *Chem. Eng. J.*, 2022, 441, 135999.
- [8] D. Xin, X. M. Lv, H. Z. Wang, F. S. Chen, S. Y. Wang, G. F. Zheng, B. Wang, Q. Han, *Chem. Eng. J.*, 2022, **455**, 140124.
- 170 [9] M. J. Liu, P. P. He, H. T. Gong, Z. H. Zhao, Y. M. Li, K. Zhou, Y. M. Liu, J. Li, Z. B. Bao, Q. W.
- 171 Yang, Y. W. Yang, Q. L. Ren, Z. G. Zhang, *Chem. Eng. J.*, 2024, **482**, 148922.
- [10] Y. G. Zhang, H. W. Huang, L. C. Wang, X. L. Zhang, Z. J. Zhu, J. J. Wang, W. Y. Yu, Y. H.
 Zhang, *Chem. Eng. J.*, 2022, **454**, 140420.
- 174 [11] Q. J. Ji, L. H. Pan, J. X. Xu, C. Wang, L. Wang, ACS Appl. Energy Mater., 2020, 3, 3558-3567.
- 175 [12] S. F. Ng, J. J. Foo, W. J. Ong, *Mater. Horiz.*, 2024, 11, 408.
- 176 [13] X. K. Xu, Z. H. Zhang, Catal. Sci. Technol., 2024, 14, 3374.
- [14] L. J. Hu, Z. C. Ding, F. Yan, Y. M. Du, Q. X. Xiao, H. Q. Wang, *Appl. Surf. Sci.*, 2023, 638, 178
 158135.
- [15] Y. N. Li, W. Wang, Y. Wang, H. C. He, X. Yu, D. Xia, L. Deng, Y. N. Liu, *Chem. Eng. Sci.*,
 2023, 282, 119333.
- 181 [16] J. W. Chen, W. Gao, Y. C. Lu, F. S. Ye, S. W. Huang, Y. Y. Peng, X. G. Yang, Y. H. Cai, J. F.
- 182 Qu, J. D. Hu, ACS Appl. Nano Mater., 2023, 6, 3927-3935.

- [17] C. Zhao, C. J. Shi, Q. Li, X. Y. Wang, G. Zeng, S. Ye, B. J. Jiang, J. Liu, *Mater Today Energy*,
 2021, 24, 100926.
- [18] J. Luo, Y. N. Liu, C. Z. Fan, L. Tang, S. J. Yang, M. L. Liu, M. Wang, C. Y. Feng, X. L. Ouyang,
 L. L. Wang, L. Xu, J. J. Wang, M. Yan, *ACS Catal.*, 2021, **11**, 11440-11450.
- [19] C. Q. Zhou, Y. H. Song, Z. H. Wang, J. Y. Liu, P. P. Sun, Z. Mo, J. J. Yi, L. Z. Zhai, *J. Environ. Chem. Eng.*, 2023, 11, 110138.
- 189 [20] S. Y. Zhou, S. L. Cheng, J. H. Han, New J. Chem. 2023, 47, 19063.
- [21] Z. Wei, M. L. Liu, Z. J. Zhang, W. Q. Yao, H. W. Tan, Y. F. Zhu, *Energy Environ. Sci.*, 2018,
 11, 2581.
- [22] Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, ACS *Catal.*, 2014, 4, 774-780.
- [23] Y. L. Peng, L. Z. Wang, Y. D. Liu, H. J. Chen, J. Y. Lei, J. L. Zhang, *Eur. J. Inorg. Chem.*, 2017,
 4797-4802.
- [24] Q. He, B. Viengkeo, X. Zhao, Z. Y. Qin, J. Zhang, X. H. Yu, Y. P. Hu, W. Huang, Y. G. Li, *Nano Res.*, 2021, 16(4), 4524-4530.
- [25] K. Y. Wang, M. Wang, J. C. Yu, D. Liao, H. Y. Shi, X. F. Wang, H. G. Yu, ACS Appl. Nano
 Mater., 2021, 4, 13158-13166.
- [26] B. Feng, Y. N. Liu, K. Wan, S. J. Zu, Y. Pei, X. X. Zhang, M. H. Qiao, H. X. Li, B. N. Zong,
 Angew. Chem. Int. Ed., 2024, 63, e202401884.
- [27] Q. X. Cao, X. L. Wu, Y. X. Zhang, B. Yang, X. F. Ma, J. Song, J. M. Zhang, J. Catal., 2022,
 414, 64-75.
- 204 [28] W. Liu, C. J. Song, M. P. Kou, Y. Y. Wang, Y. Deng, T. Shimada, L. Q. Ye, Chem. Eng. J., 2021,
- **425**, 130615.
- 206