Supporting Information

Machine Learning on Deconstructing Contributions of Atomic Characterizations to

Hybridization Determined Electron Transfer in Perovskite Catalyst

Jun Zhu,¹ Mengdan Song,¹ Qiling Qian,¹ Yang Yue,² Guangren Qian,² Jia Zhang,^{1,*}

¹ SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and

Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444,

P. R. China;

² MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi,

337022, P. R. China;

Corresponding authors

* E-mail: irujam@t.shu.edu.cn.

eXtreme Gradient Boosting Regression (XGBR)

XGB is a decision tree ensemble algorithm developed by Tianqi Chen et al.

$$L^{(t)} = \sum_{i=1}^{n} I(y_{i'} \hat{y}_{i}^{t-1} + f_{t}(X_{i})) + \Omega(f_{t}) \# (13)$$

$$I(y_{i'} \hat{y}_{i}^{t-1}) \text{ represents the loss function between } Y_{i} \text{ and } \hat{Y}_{i}^{t-1}, \text{ which can be defined}$$
by oneself. Regression problems generally use square error. Y_{i} represents the true value of sample i . \hat{Y}_{i}^{t-1} represents the predicted value of the top t-1 decision trees for sample i . $f_{t}(X_{i})$ represents the predicted value of the t-th decision tree for sample i . $\Omega(f_{t})$ represents the complexity of the t-th tree model. X_{i} represents the feature vector representing sample i .

In other words, when there are k trees, the predicted value for sample i is equal to the predicted value of the top k-1 decision trees plus the predicted value of the k-th tree. Then the objective function is

$$obj = \sum_{i=1}^{n} (I(y_i, \hat{y}_i^{k-1}) + f_k(X_i)) + \sum_{j=1}^{k-1} \Omega(f_j) + \Omega(f_k) # (14)$$

The complexity of the previous tree is known, so $\sum_{j=1}^{k-1} \Omega(f_j)$ is the constant term.
The part step is to minimize the objective function and simplify formula (14) usin

The next step is to minimize the objective function and simplify formula (14) using Taylor expansion:

$$0bj = \sum_{i=1}^{n} (I(y_{i'}\hat{y}_{i}^{k-1}) + g_{i}f_{k}(X_{i})) + \frac{1}{2}h_{i}f_{k}^{2}(X_{i})) + \Omega(f_{k}) \#(15)$$

$$g_{i} = \frac{\partial I(y_{i'}\hat{y}_{i}^{k-1})}{\partial \hat{y}_{i}^{k-1}} h_{i} = \frac{\partial^{2}I(y_{i'}\hat{y}_{i}^{k-1})}{\partial (\hat{y}_{i}^{k-1})^{2}} are first and second derivatives of $I(y_{i'}\hat{y}_{i}^{k-1})$,$$

respectively.

 $\sum_{i=1}^{n} l(y_i, \hat{y}_i^{k-1})$ The first term^{i = 1} in formula (15) is the sum of the errors of the top k-1 trees. When we train the k-th tree, the error of the top k-1 trees is known and can be regarded as a constant, so we will temporarily round it off in the objective function. Therefore, the objective function becomes a function of $f_k(X_i)$, $f_k(X_i)$ is a function of the output parameter w of the leaf node, converting the objective function into a function of w.

$$0bj = \sum_{i=1}^{n} (g_{i}W_{k}(X_{i}) + \frac{1}{2}h_{i}W_{k}^{2}(X_{i})) + \gamma T + \frac{1}{2}\lambda \sum_{j=1}^{T} w_{j}^{2} \#$$
$$= \sum_{j=1}^{T} (w_{j}\sum_{i \in I_{j}} g_{i} + \frac{1}{2}w_{j}^{2} \sum_{i \in I_{j}} (h_{i} + \lambda)) + \gamma T \# (16)$$

T represents the number of leaf nodes, I_j represents the sample in the j-th leaf node, λ and γ are hyperparameter. λ is the penalty coefficient for the weight w, and γ is the complexity parameter.

$$G_{i} = \sum_{i \in I_{j}} g_{i} H_{i} = \sum_{i \in I_{j}} h_{i}$$

When
$$D_{j} = \sum_{j=1}^{T} (w_{j}G_{i} + \frac{1}{2}w_{j}^{2}(H_{i} + \lambda) + \gamma T \# (17))$$

j is the j-th leaf node, and i is still the i-th sample. Obviously, formula (17) is about

the quadratic function of ^W_j. In order to find the optimal objective function value, the

derivative of W_j is taken. When $w_j = -\frac{G_i}{H_j + \lambda}$, the objective function achieves the optimal value.

$$obj_{min} = -\frac{1}{2}\sum_{j=1}^{T}\frac{G_{j}^{2}}{H_{j} + \lambda} + \gamma T \#(18)$$

Bayesian Global Optimization Functions

1. Probability of improvement (PI), quantifying the observation value of x may increase the probability of the current optimal objective function value, the acquisition function is as follows:

$$a_t(x, D_{1:t}) = p(f(x) \le v^* - \xi) = \phi\left(\frac{v^* - \xi - u_t(x)}{\sigma_t(x)}\right) \#(19)$$

 v^* represents the current optimal functional value, $\varphi(\cdot)$ is the standard normal distribution cumulative density function, ξ is the equilibrium parameter (used to balance the relationship between local and global searches, usually set manually).

When near the current optimal solution, the value is large, and when far from the current optimal solution, the value is small. Although the PI strategy can select the evaluation point with the highest probability of improvement, it considers all improvements to be equal and only reflects the probability of improvement without reflecting the magnitude of the improvement.

2. Expected Improvement (EI), the acquisition function of EI includes PI, which integrates the probability of improvement and reflects different amounts of improvement:

$$a_{t}(x,D_{1:t}) = \begin{cases} (v^{*} - u_{t}(x))\phi(\frac{v^{*} - u_{t}(x)}{\sigma_{t}(x)}) + \sigma_{t}(x)\phi(\frac{v^{*} - u_{t}(x)}{\sigma_{t}(x)}), \sigma_{t}(x) > 0\\ 0, & \sigma_{t}(x) = 0 \end{cases}$$

The EI strategy can also include the balance parameter ξ to further handle the relationship between local and global variables:

$$a_{t}(x,D_{1:t}) = \begin{cases} (v^{*} - \xi - u_{t}(x))\phi(\frac{v^{*} - \xi - u_{t}(x)}{\sigma_{t}(x)}) + \sigma_{t}(x)\phi(\frac{v^{*} - \xi - u_{t}(x)}{\sigma_{t}(x)}), \sigma_{t}(x) > 0\\ 0, & \sigma_{t}(x) = 0 \end{cases}$$

3. Upper confidence bound (UCB), maximizing the upper confidence level of the estimated value of the objective function:

$$a_t(x,D_{1:t}) = u_t(x) + \sqrt{\beta_i}\sigma_t(x) \#(22)$$

 β_i balances expectation and variance.

Fig. S1. XRD of synthesized perovskites.

Crystal phases of the synthesized materials were $LaCrO_3$ ¹, $LaMnO_3$ ², $LaFeO_3$ ³, PrMnO₃⁴, and NdMnO₃⁵, respectively.

Fig. S2. (**a1**) SEM image, (**a2**) La, (**a3**) Cr, and (**a4**) O mappings of LaCrO₃. (**b1**) SEM image, (**b2**) La, (**b3**) Mn, and (**b4**) O mappings of LaMnO₃. (**c1**) SEM image, (**c2**) La, (**c3**) Fe, and (**c4**) O mappings of LaFeO₃. (**d1**) SEM image, (**d2**) Pr, (**d3**) Mn, (**d4**) O mappings of PrMnO₃. (**e1**) SEM image, (**e2**) Nd, (e3) Mn, (**e4**) O mappings of NdMnO₃.

Fig. S3. SEM-EDS of (a) LaCrO₃, (b) LaMnO₃, (c) LaFeO₃, (d) PrMnO₃, and (e) NdMnO₃

	TV of A	IV of A	EV of A	TV of B	IV of B	EV of B	TV of O	EV of O
LaCrO ₃	20	47.6	35.6	20	52.4	43.3	60	21.1
LaMnO₃	20	45.7	16.8	20	54.3	14.5	60	68.7
$LaFeO_3$	20	48.6	18.0	20	51.4	16.6	60	65.4
PrMnO₃	20	40.4	15.7	20	59.6	14.4	60	69.9
NdMnO₃	20	45.6	19.8	20	54.4	21.5	60	58.7

Table S1. The average molar composition of each element in the perovskites

TV, Theoretical value (%)

IV, ICP value (%)

EV, SEM-EDS value (%)

EVDW_B PCR_A Label (%) AN_A D_d LaCrO₃ 2.23 57 1.8 27.87 68.25 LaMnO₃ 99.13 2.25 57 1.8 26.72 26.91 2.27 57 LaFeO₃ 1.8 31.07 PrMnO₃ 79.07 2.25 59 1.76 14.98 NdMnO₃ 2.25 60 1.74 14.69 71.09

Table S2. Feature values and labels (toluene conversion at 330°C) of typical perovskites.

Table S3. Textural properties of the perovskites

	BET surface area (m ² ·g ⁻¹)	Total pore volume (cm ³ ·g ⁻¹)
LaCrO ₃	7.0	0.064
LaMnO₃	14.7	0.098
LaFeO₃	16.3	0.121
PrMnO₃	7.6	0.022
NdMnO ₃	6.4	0.019

Fig. S4. XPS spectra for (**a**) La 3d of LaCrO₃, LaMnO₃, and LaFeO₃; (**b**) Mn 2p of LaMnO₃, PrMnO₃, and NdMnO₃.

	BE of B-	BE of B-	Ratio of	T_{act}	S _{act}	T _{latt} (°C)	S _{latt}
	O _{latt} (eV)	O _{act} (eV)	O_{act}/O_{latt}	(°C)	(mmol·g ⁻¹)		(mmol·g ⁻¹)
LaCrO₃	529.47	531.56	1.33	350	0.14	-	-
LaMnO₃	529.40	531.60	1.49	359	1.09	834	1.08
LaFeO₃	529.32	531.82	1.28	417	0.07	≥1000	≥0.37
PrMnO₃	529.69	531.84	1.43	517	0.28	739	1.30

Table S4. Fitting results of O1s XPS and H2-TPR

Fig. S5. DRIFTS of LaCrO₃ (**a-c**), LaMnO₃ (**d-f**), and LaFeO₃ (**g-i**). Changing rates of intermediate peaks (**j**).

Fig. S5a-S5i shows the DRIFTS of toluene-adsorbed catalysts reacted with inflowing O₂. Two peaks of LaCrO₃ (900 cm⁻¹ and 1000 cm⁻¹) were denoted as LaCrO₃-1 and LaCrO₃-2, respectively. Three peaks of LaFeO₃ (1020 cm⁻¹, 1145 cm⁻¹, and 1447 cm⁻¹) were denoted as LaFeO₃-1, LaFeO₃-2, and LaFeO₃-3, respectively. No obvious peak was recognized in LaMnO₃ since 10 min was insufficient for toluene to consume reactive oxygen species in LaMnO₃. As for the other two catalysts, the instantaneous rate of the peak change was calculated (**Fig. S5j**). The instantaneous rate of the peak in LaMnO₃ was regarded as the largest, followed by LaCrO₃ and LaFeO₃. Therefore, the difference in electron-transfer ability significantly affected the formation or disappearance of intermediates in the catalysis.

Synthesis Details

	Drying (°C)	Drying time (h)	Calcination (°C)	Calcination time (h)
FeMnO ₃	105	12	300/900	1/12
GdCoO₃	105	12	350/900	2/5
$GdFeO_3$	105	12	350/900	2/5
GdMnO₃	105	12	350/900	2/5
LaAlO ₃	105	12	300/800	1/5
LaCoO₃	105	12	650	5
LaCrO ₃	105	12	650	5
LaFeO ₃	105	12	600	8
$LaMnO_3$	105	12	700	8
LaNiO₃	105	12	650	5
$NdFeO_3$	105	12	800	3
PrCoO ₃	105	12	350/900	2/5
PrFeO₃	105	12	350/900	2/5
PrMnO ₃	105	12	350/900	2/5
$PrNiO_3$	105	12	350/900	2/5
SmCoO₃	105	12	350/900	2/5
SmFeO₃	105	12	800	3
YFeO ₃	105	12	800	3
NdCrO ₃	105	12	350/900	2/5
NdMnO ₃	105	12	350/900	2/5
CeNiO ₃	105	12	300 (spontaneous combustion)	2
CeMnO ₃	105	12	350/900	2/5

 Table S5. Details of perovskite synthesis.

Descriptor	Descriptions
AN _A	Atomic number of A-site element
AN _B	Atomic number of B-site element
R _A	Shannon effective ionic radius of A-site element
R _B	Shannon effective ionic radius of B-site element
PCR _A	Pyykkö covalent radius of A-site element
PCR _B	Pyykkö covalent radius of B-site element
CCR _A	Cordero covalent radius of A-site element
CCR _B	Cordero covalent radius of B-site element
CVDW _B	Batsanov crystallographic van der waals radius of B-site element
EVDW _B	Batsanov equilibrium van der waals radius of B-site element
AEN _B	Pearson absolute electronegativity of B-site atom
EN _B	Pearson absolute electronegativity of B-site ion
EN _A -P	Pauling electronegativity of A-site element
EN _B -P	Pauling electronegativity of B-site element
EN _B -S	Sanderson electronegativity of B-site element
EN _A -AR	Allred-Rochow electronegativity of A-site element
EN _B -AR	Allred-Rochow electronegativity of B-site element
EN _B -C	Configuration energy of B-site element
EN _B -A	Allred electronegativity of B-site element
EN _A -NE	Nagle electronegativity of A-site element
EN _B -NE	Nagle electronegativity of B-site element
EN _B -Sm	Smith electronegativity of B-site element
EN _A -MB	Matyonov-Batsanov of A-site element
EN _B -MB	Matyonov-Batsanov of B-site element
FIE _B	First ionization energy of B-site element
SIE _B	Second ionization energy of B-site element
TIE _B	Third ionization energy of B-site element
EA _B	Electron affinity of B-site element
GR _A	Group number of A-site element
GR _B	Group number of B-site element
PE _A	Period number of A-site element
PE _B	Period number of B-site element
d _B	The number of d electrons of B-site element
D _d	d electron density of B-site element
CNo	The coordination number of O
SG	Space Group
τ	The tolerance factor
μ	Octahedral factor
FE	Formation Energy

Table S6. Descriptors of Model

Fig. S6. Heatmap of the Pearson correlation coefficient matrix between descriptors

Electrochemical Impedance Spectroscopy

The battery had Ag/AgCl (4M KCl) reference electrode, platinum wire pair electrode, and catalyst modified glass carbon working electrode, the electrolyte was $0.1 \text{ M Na}_2\text{SO}_4$. Homogeneous catalyst ink was prepared by 10 mg catalyst powder, 10 mg conductive carbon, 0.1 mL Nafion solution and 1 mL of anhydrous ethanol. Then transfer it to the surface of the glassy carbon electrode and dry it in ambient air. EIS were recorded at -0.3 V vs. Ag/AgCl within a frequency range from 10^5 to 10^{-1} Hz using an AC voltage at a 5mV amplitude.

Fig. S7. LaCrO₃ (a), LaMnO₃ (b), LaFeO₃ (c) perovskite structure model.

References

- 1. H. Zhao, Q. Zhu, X. Ye, L. Wang and S. Dong, *Coatings*, 2024, **14**.
- 2. Z.-X. Wei, L. Wei, L. Gong, Y. Wang and C.-W. Hu, *Journal of Hazardous Materials*, 2010, **177**, 554-559.
- 3. S. Afzal, X. Quan and J. Zhang, *Applied Catalysis B: Environmental*, 2017, **206**, 692-703.
- 4. S. Chen, Y. Hao, R. Chen, Z. Su and T. Chen, *Journal of Alloys and Compounds*, 2021, 861.
- 5. Y. Wang, H. Wang, W. Tan and D. Huo, *Journal of Applied Physics*, 2022, **132**.