
Supplementary Information for:

Phase Diagram of ZIF-4 from Computer

Simulations

Emilio Méndez, Rocio Semino
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Simulation details

We performed all simulations via the LAMMPS open source software[7], cou-
pled with the PLUMED[9] package for implementing well-tempered meta-
dynamics. The nb-ZIF-FF force field was used to model the interactions[1].
This force field has two main features: (i) the inclusion of dummy atoms in
Zn2+ and N (within imidazole) species to correctly reproduce the tetrahe-
dral coordination environment around the metal, and (ii) the possibility of
metal-ligand bond breaking/formation through the use of non bonded inter-
action terms in the form of Morse potentials. This force field is also known to
reproduce the experimental properties of several ZIF polymorphs including
ZIF-4, along with the corresponding glasses obtained through ambient pres-
sure thermal amorphization.[1, 4] Bonded terms are based on the ZIF-FF
force field[10] and include harmonic style bonds, harmonic plus an additional
Urey Bradley term for angles and cosine based dihedrals and impropers.
Coulombic interactions are computed via the particle-particle/particle-mesh
method while all dispersion interactions (Morse potentials for coordination
bonds and 12-6 Lennard-Jones for the rest of the species) were computed
considering a cutoff of 1.3 nm.

The integration of the equations of motion was done in the NPT ensem-
ble, using Nose-Hoover thermostats and barostats [3]. The temperature was
set to 300 K, and the damping parameters were set to 100 and 1000 time
steps for regulating temperature and pressure respectively. The barostat
acted independently in each of the three system dimensions to allow the cell
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parameters to evolve in an unconstrained way. In all cases the simulation
box was kept orthorhombic.

The parameters for well-tempered metadynamics were 9 kJ/mol and 0.1
nm for the initial gaussian height and standard deviation, respectively, and
75 for the bias factor that controls the decay of the heights with time. Five
parallel walkers were employed to accelerate the metadynamics convergence.[6]
Each walker evolves independently from the others but they all share the
same bias potential obtained from the addition of gaussian terms. The time
step was set to 0.5 fs and the total time for each simulation, comprising all
the walkers, was around 100 ns. Additional constraints were included for
preventing the system from exploring non physical regions. These consisted
in upper and lower bounds for each of the cell parameters and for the total
volume, as well as a lower bound for the Zn-N total coordination to avoid
metal-ligand bond breaking events that could lead to amorphization. This is
because no amorphous phase has been experimentally reported in the phase
diagram region that we target for exploration in this work. As a conse-
quence, all the studied phases retained the connectivity of ZIF-4, resulting
in a tetra-coordination for all the Zn2+ in the simulation box.

Metadynamics simulations were conducted at 0, 40 and 80 MPa. All of
them started from a 2x2x2 super cell of ZIF-4, which contains a total of
128 Zn2+ atoms and has dimensions of 3.08x3.06x3.68 nm3. Additionally,
a few unbiased molecular dynamics simulations were performed for each of
the obtained polymorphs. These were all carried out in the NPT ensemble
for the thermodynamic conditions specified in each case, with the same
force field, thermostat, barostat and timestep as those reported for the well-
tempered metadynamics.

Well-tempered Metadynamics Setup

The following script was used as PLUMED input file for the configuration
of the well-tempered metadynamics runs:

1 # Define volume and cell parameters:

2 vol: VOLUME

3 cell: CELL

4

5 # Read Zn and N atom indexes from ndx file:

6 Zn_atoms: GROUP NDX_FILE=index.ndx NDX_GROUP=zn

7 N_atoms: GROUP NDX_FILE=index.ndx NDX_GROUP=n

8

9 # Calculate the Zn-N coordination number:

10 cn: COORDINATION GROUPA=Zn_atoms GROUPB=N_atoms R_0=0.05 D_0=0.22 NN=6

11
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12 # Metadynamics setup:

13 meta: METAD ...

14 ARG=cell.ax,cell.by,cell.cz

15 SIGMA=0.1,0.1,0.1

16 HEIGHT=9.0

17 BIASFACTOR=75.0

18 TEMP=300.0

19 PACE=1000

20 GRID_MIN=2.4,2.4,2.4

21 GRID_MAX=4.4,4.4,4.4

22 GRID_BIN=200,200,200

23 WALKERS_N=5

24 WALKERS_ID=0

25 WALKERS_DIR=../

26 WALKERS_RSTRIDE=1000

27 ...

28

29 # Additional constraints:

30 uwall: UPPER_WALLS ARG=vol,cell.ax,cell.by,cell.cz AT=36.0,3.8,3.8,3.8 KAPPA

=10000,50000,50000,50000 EXP=2,2,2,2

31 lwall: LOWER_WALLS ARG=vol,cell.ax,cell.by,cell.cz,cn AT=16.0,2.6,2.6,2.6,511.0

KAPPA=10000,50000,50000,50000,50000 EXP=2,2,2,2,2

32

33 # Output:

34 PRINT ARG=vol,cell.ax,cell.by,cell.cz,uwall.bias,lwall.bias,meta.bias,cn FILE=colva

.dat STRIDE=1000

Each section contains a comment explaining the aim of the code frag-
ment that follows. Default PLUMED units were used: nm for distance, ps
for time and kJ/mol for energy. The cell parameters a, b and c are called
’cell.ax’, ’cell.by’ and ’cell.cz’. The coordination number command ’COOR-
DINATION’ counts the number of Zn-N pairs at a distance lower than 0.22
nm, a slightly higher value than the typical bond length of 0.21 nm. This
number is constrained through the ’LOWER WALLS’ command to be al-
ways higher than 511. Since the total coordination number in the system is
512, this prevents Zn-ligand bond breaking events. Additional descriptions
of each command can be found in the PLUMED manual.

Metadynamics Convergence and Data Treatment

To check if the order parameter space was correctly sampled during the
simulation, we plotted the evolution of a, b and c over time in Fig. 1,
for the simulation at P = 40 MPa. These results include the data from
the five walkers of the metadynamics. Although it is not possible to directly
assign each point to one of the studied polymorphs to observe the presence of
interconvertion events due to the high dimensionallity of the order parameter
space, it is clear that virtually all the points in the accessible region were
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visited multiple times, which is a necessary condition for the convergence of
the method. Similar results were obtained for the simulations at P = 0 and
80 MPa.

Figure 1: Collective variables a, b, and c as a function of time for the P = 40
MPa simulation. Results from all the five walkers are concatenated.

To analyze the convergence of the well-tempered metadynamics simula-
tions we followed the procedure developed by Tiwary et al.[8] This approach
takes into account the fact that in metadynamics the bias potential is dy-
namically modified as the simulation advances, never reaching a plateau
value. This makes the choice of a convergence criterion a non trivial task.
The authors found a way to compute a time independent free energy esti-
mator that allows to compare results measured at different times during the
simulation given by:

G(s) = −γV (s, t)

(γ − 1)
+ kbT ln

∫
e

γV (s,t)
(γ−1)kbT ds (1)

were s represents the collective variable(s), γ the bias factor, and V (s, t) the
time dependent bias potential. The last term is a time dependent constant
that aligns the free energy estimation at time t with the ones computed at
previous times. For applying this technique to data obtained from different
walkers, we time-ordered the gaussians coming from each simulation. In Fig.
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2 we plotted the free energy estimator G(a, b, c) of eq. 1 as a function of
time for three (a, b, c) points that roughly correspond to the lattice constants
of the studied polymorphs. We also plotted the free energy without the
addition of the second term of eq. (1). As expected, these last values
continue to descend without reaching a plateau, but the corrected estimators
fluctuate around fixed values.

In order to compute the final free energy profile and the corresponding
errors, we need to time average the results from the corrected free energy
curves. To avoid artifacts that arise when dealing with correlated data, we
employed the block averaging technique developed by Bussi and Tribello.[2]
To estimate the optimal block size for which the data is uncorrelated, we
computed the standard deviation of the free energy as a function of the
block size. The results are shown in figure 3 for the (a, b, c) point that cor-
responds to the lowest minimum. When the individual block values become
uncorrelated, the standard deviation reaches a plateau. According to this
criterion, we averaged data from blocks of 8 ns.

Figure 2: Free energy estimator for points in the (a, b, c) space that cor-
responds to ZIF-4 (green), ZIF-4-cp (black) and ZIF-4-cp-II (red) lattice
constants for the simulation at P = 40 MPa. The curves in the negative
region correspond to the estimator without the correction term of Eq. (1).

5



Figure 3: Free energy standard deviation for the absolute minimum as a
function of the block size.

Multitermal Multibaric Ensemble

In the multitermal multibaric ensamble developed by Piaggi et. al,[5] a
metadynamics simulation is performed with the energy E and volume V as
order parameters. In this context the authors derive an expression that links
the free energy at pressure P and temperature T , G(T,P )(E, V ), with the one
corresponding to a thermodynamic state (T ′, P ′) from statistical mechanics
considerations:

β′G(T ′,P ′)(E, V ) = βG(T,P )(E, V ) + (β′ − β)E + (β′P ′ − βP )V + C (2)

where β = 1/kbT , β
′ = 1/kbT

′, and C is a constant that does not depend
on E and V . Since we aimed to study the properties of the polymorphs at
different pressure conditions but at constant temperature, we did not bias
the energy. For an isotherm, equation (2) simplifies to:

G(P ′)(V ) = G(P )(V ) + (P ′ − P )V + C (3)

Finally, if the order parameters are the cell dimensions instead of the volume,
equation (3) trivially turns into:

G(P ′)(a, b, c) = G(P )(a, b, c) + (P ′ − P )V + C (4)
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where a, b and c are the dimensions of the simulation box in the x, y and z
directions respectively, and V = a.b.c since we only considered orthorhombic
configurations.

Calculation of G(V )

For the computation of the free energy as a function of the volume at pres-
sure P (G(P )(V )) starting from the function G(P )(a, b, c) that was obtained
from the well-tempered metadynamics simulations, we proceeded as follows.
First, we computed the probability P(P )(a, b, c) given by the Boltzmann
distribution:

P(P )(a, b, c) = C ′e−βG(P )(a,b,c) (5)

where C ′ is a normalization constant. Then, since the volume is an explicit
function of a, b and c, the probability of the system to have volume V at a
pressure P was obtained by the following integration:

P(P )(V ) =

∫
δ(V − abc) P(P )(a, b, c) da db dc (6)

where δ(x) is the Dirac delta function. In practice, this integral was per-
formed by discretizing the volume variable into bins. Finally G(V ) was
obtained by the inversion of equation (5), now with the volume as variable:

G(P )(V ) = −1/β ln P(P )(V ) (7)

The corresponding error bars were calculated by propagation of errors from
equations (5), (6) and (7).

Additional Results

Table 1: Average angle between the normal vector to the 4-membered ring
plane and each of the axes a, b and c in ZIF-4-cp and ZIF-4-cp-II. Ex-
perimental results computed from the available cif files are shown between
parenthesis.

ZIF-4-cp ZIF-4-cp-II
a 52.3 (53.1) 48.7 (48.8)
b 41.9 (40.2) 44.0 (44.0)
c 74.7 (76.3) 77.6 (77.2)
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