Supplementary information

Ultrafast flash joule heating synthesis of the Pt/MoO_x heterostructure

for enhancing the electrocatalytic hydrogen evolution reaction

Lijuan Zhu, ^a Zhongjie Lai, ^a Jilong Xu, ^a Peiyu Ma, ^a Jiaxiang Lu, ^a Qian Xu, ^a Yitao Lin, ^b Lei Zheng, ^c Lihui Wu, ^a Honghe Ding, ^{*a} Jiawei Ge, ^{*d} and Yifan Ye^{*a}

^a National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China.

^b Department of Engineering Physics, Tsinghua University, Beijing 100084, PR China

° Institute of High Energy Physics Chinese Academy of Sciences, Beijing 100049, PR China.

^d School of Chemistry and Materials Science, University of Science & Technology of China, Anhui 230026, China.

*Corresponding authors.

Correspondence authors E-mail address:

hhd2016@ustc.edu.cn (Honghe Ding); gejiawei@ustc.edu.cn (Jiawei Ge); yifanye92@ustc.edu.cn (Yifan Ye);

Supplementary Figures and Tables

Fig. S1 SEM images of ungrounded Pt-MoO₃ mixture at 10 μ m scale (a) and at 2 μ m scale (b). SEM image of grounded Pt-MoO₃ mixture at 2 μ m scale (c). The elemental mapping images of ungrounded (d) and grounded (e) Pt-MoO₃ mixture.

Fig. S2 The XRD pattern of the Pt NPs.

Fig. S3 The mass ratio of MoO_2 and MoO_3 from the quantitative analysis of the XRD of Pt/MoO_x-F.

Fig. S4 Schematic diagram of the temperature-time evolution of the ultrafast joule heating eating method.

Fig. S5 (a) The TEM image of MoO_x . (b) The size distribution diagram of the metal nanoparticles on the Pt/MoO_x-F. (c) The elemental mapping images of MoO_x .

Fig. S6 Experimental and fitted EXAFS spectra of (a) Pt NPs and (b) Pt/MoO_x-F.

Fig. S7 UPS spectra of (a) SEC and (b) VB of MoO_x and Pt/MoO_x -F samples.

Fig. S8 The overpotential comparison of Pt/MoO_x -F and other reference samples at the current density of 10 mA cm⁻² and 100 mA cm⁻².

Fig. S9 LSV curves of as-prepared samples normalized by mass loading of Pt species.

Fig. S10 (a) The plot of current density versus time for Pt/MoO_x -F under a constant voltage test in 0.5M H₂SO₄ electrolyte. (b) The plot of overpotential versus time for Pt/MoO_x -F under a constant current test.

Fig. S11 Structural changes in the Pt/MoO_x-F before and after the HER. TEM images of Pt/MoO_x-F before (a) and after (b) the electrochemical stability tests. HR-TEM images of Pt/MoO_x-F before (c) and after (d) the electrochemical stability tests. The element distribution images of Pt/MoO_x-F before (e) and after (f) the electrochemical stability tests.

Fig. S12 Nyquist plots of Pt-MoO_x-F and reference samples.

Fig. S13 Current difference at different scan rates for the estimation of the doublelayered capacitance of (a) Pt/MoO_x-F, (b) Pt/MoO_x-P, (c) Pt NPs, (d) MoO_x, (e) Pt/MoO₃ and (f) Pt/MoO₂ in 0.5 M H₂SO₄. (g) Capacitive currents as a function of the scan rate of Pt/MoO₂ and Pt/MoO₃ samples.

Fig. S14 In 0.5 M H_2SO_4 solution, comparison of the overpotentials and Tafel slopes at 10mA cm⁻² with the references.

Fig. S15 Electrochemical HER performance under alkaline electrolyte. (a) Polarization curves of Pt/MoO_x-F in comparison with 20 wt.% Pt/C and other reference samples in KOH. (b) Tafel plots for Pt/MoO_x-F and other reference samples. (c) Mass activity at $\eta = 150$ mV of the as-prepared samples. (d) The plot of current density versus time for Pt/MoO_x-F under a constant voltage test.

Fig. S16 XRD patterns of Pt/MoO_x-F, Pt/MoO₂ and Pt/MoO₃ samples.

Fig. S17 (a) TEM image of Pt/MoO_x-F. (b) TEM image of Pt/MoO₃. (b) TEM image of Pt/MoO₂. The size distribution diagram of the metal nanoparticles on the Pt/MoO_x-F (d), Pt/MoO₃ (e), and Pt/MoO₂ (f).

Fig. S18 (a) TEM image of Pt/MoO₃. (b) TEM image of Pt/MoO₂. (c) The elemental mapping images of Pt/MoO₃. (d) The elemental mapping images of Pt/MoO₂.

Fig. S19 The overpotential comparison of Pt/MoO_x-F and other reference samples at the current density of 10 mA cm⁻² and 100 mA cm⁻².

Fig. S20 Nyquist plots of Pt-MoO_x-F and reference samples.

Fig. S21 The DFT computational models of (a) Pt, (b) MoO_x -F and (c) Pt/MoO_x-F.

Fig. S22 The DFT model diagram of three different adsorption hydrogen sites on the Pt/MoO_x -F.

Spectrogram of the total number of distribution maps				
Element	Atom %			
0	3.76			
Мо	1.57			

Table S1 The spectrogram of the total number of distribution maps of Pt/MoO_x-F.

Table S2 The percentage of Pt loading of as-prepared samples was measured by ICP-AES.

Sample	Pt Content (wt.%)
Pt/MoO _x -F	1.853
Pt/MoO _x -P	1.854
Pt NPs	1.857
Pt/MoO ₃	1.853
Pt/MoO ₂	1.856

Table S3 The EXAFS fitting results of Pt/MoO_x -F and reference samples.

sample	path	CN	Bond length($^{\text{A}}$)	Debye-Walker	$\triangle E_0(eV)$	R factor	
D: C '1	D. D.	10			7.07	0.001	
Pt foil	Pt-Pt	12	2.76	0.004	/.9/	0.001	
PtO ₂	Pt-O	6	2.00	0.003	9.37	0.009	
Pt NPs	Pt-Pt	6.18	2.76	0.005	0.00	0.008	
	Pt-O	1.12	2.00	0.007	0.23		
	Pt-Pt	8.67	2.76	0.006			
Pt/MoO _x -F	Pt-O	0.51	2.01	0.009	7.74	0.016	
	Pt-Mo	0.94	2.75	0.008			

Binding Energies (eV)								
Samples	Mo ⁴⁺		Mo ⁵⁺		Mo ⁶⁺		Pt	
	Mo3d _{5/2}	Mo3d _{3/2}	Mo3d _{5/2}	Mo3d _{3/2}	Mo3d _{5/2}	$Mo3d_{3/2}$	$Pt4f_{7/2}$	$Pt4f_{5/2}$
MoO _x	229.25	232.38	231.41	234.54	232.71	235.84	-	-
Pt/MoO _x -F	-	-	231.63	234.76	232.65	235.78	71.65	74.95
Pt NPs	-	-	-	-	-	-	72.23	75.53

 Table S4 The XPS spectra-specific parameters.

	η ₁₀	η ₁₀₀	Mass activity	Tafel slope	Referenc
Sample	(mV)	(mV)	(A mg ⁻¹ Pt)	(mV dec ⁻¹)	e
Pt/MoO _x -F	19.32	55.08	13.80@50mV	19.94	This work
Pt-SAs/WS ₂	32	170	130.2@100mV	28	[1]
Mo ₂ TiC ₂ T _x Pt _s	30	77	8.3@77 mV	30	[2]
Pt _{SA} /mWO _{3-x}	47	-	12.8@50 mV	45	[3]
Pt-TiO _{2-x} NSs	36	180	~0.85@150mV	32.1	[4]
Pt _{0.47} Ru/Acet	28	~80	2.63@100mV	33.3	[5]
Pt/Ni-DA	18	-	2.13@50mV	34	[6]
Pt–WO _x /WS ₂	42	~300	0.68@112 mV	26	[7]
Pt-MoS ₂	67.4	-	-	76.2	[8]
Pt _{SA} /NT/NF	30	88	0.93@100mV	-	[9]
Pt/V ₂ O ₃ /V ₈ C ₇	45	78	0.64@100mV	30.2	[10]
Pd7@Pt3	33	90	-	23.1	[11]
0.8% Pt-Naf- CV	34	143	-	33	[12]
PtW NPs/C	19.4	-	0.566@20mV	27.8	[13]
Pt _{SA} /α- MoC _{1-x} @C- 0.75	12	120	31.56@100mV	27	[14]

Table S5. Comparison of HER performance between Pt/MoO_x -F and the recentlyreported Pt-based electrocatalysts in 0.5 M H₂SO₄.

References:

- Y. Shi, Z. Ma, Y. Xiao, Y. Yin, W. Huang, Z. Huang, Y. Zheng, F. Mu, R. Huang,
 G. Shi, Y. Sun, X. Xia and W. Chen, *Nat. Commun.*, 2021, 12, 3021.
- [2] J. Zhang, Y. Zhao, C. Chen, C. Dong, R. Liu, C. Han, Y. Li, Y. Gogotsi and G. Wang, *Nat. Catal.*,2018, 1, 985-992.
- [3] J. Park, S. Lee, H. E. Kim, A. Cho, S. Kim, Y. Ye, J. W. Han, H. Lee, J. H. Jiang and J. Lee, *Angew. Chem., Int. Ed.*, 2019, 131, 16184.
- [4] K. M. Naik, *Nanoscale*, 2020, **12**, 11055-11062.
- [5] Y. Chen, J. Li, N. Wang, Y. Zhou, J. Zheng and W. Chu, *Chem. Eng. J*, 2022, 448, 137611.
- [6] Y. Peng, K. Ma, T. Xie, J. Du, L. Zheng, F. Zhang, X. Fan, W. Peng, J. Ji and Y. Li, ACS Appl. Mater, 2023, 15, 27089–27098.
- [7] L. S. Oh, J. Y. Kim, H. W. Kim, J. Han, E. Lim, W. B. Kim, J. H. Park and H. J. Kim, *Chem. Commun.*, 2021, 57, 11165-11168.
- [8] A. Shan, X. Teng, Y. Zhang, P. Zhang, Y. Xu, C. Liu, H. Li, H. Ye and R. Wang, *Nano Energy*, 2022, 94, 106913.
- [9] L. Zhang, L. Han, H. Liu, X. Liu and J. Luo, Angew. Chem. Int. Ed., 2017, 56, 13694-13698.
- [10] Y. Li, Y. Sheng, L. Shao, Y. Li, W. Xu, S. Zhang, F. Shao and J. Wang, J. Mater. Chem. A, 2024, 12, 8724-8733.
- [11] Y. Liu, N. Yodsin, T. Li, H. Wu, R. Jia, L. Shi, Z. Lai, S. Namuangruk and L. Huang, *Mater. Horiz.*, 2024, **11**, 1964-1974.
- [12] J. Yu, D. Wei, Z. Zheng, W. Yu, H. Shen, Y. Qu, S. Wen, Y. U. Kwon and Y. Zhao, J. Colloid Interface Sci, 2020, 566, 505-512.
- [13] D. Kobayashi, H. Kobayashi, D. Wu, S. Okazoe, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumra, S. Kawaguchi, Y. Kubota, S. M. Aspera, H. Nakanishi, S. Arai and H. Kitagawa, J. Am. Chem. Soc., 2020, 142, 17250-17254.
- [14] W. Wang, Y. Wu, Y. Lin, J. Yao, X. Wu, C. Wu, X. Zuo, Q. Yang, B. Ge, L. Yang, G. Li, S. Chou, W. Li and Y. Jiang, *Adv. Funct. Mater.*, 2022, **32**, 2108464.