Electronic Supplementary Information (ESI)

Enhanced electrocatalytic Overall Alkaline Water Splitting induced by Interfacial Electron Coupling of Mn_3O_4 Nano-Cube @ CeO₂ / γ -FeOOH

Nanosheet hetero-structure

Debasish Ghosh,^a Dimple K. Bora,^{b c} Asit Baran Panda^{a b*}

^a Functional Materials Group, Advanced Materials and Corrosion Division, National Metallurgical Laboratory (CSIR-NML), Jamshedpur, Jharkhand, India, 831007.

^b Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201002.

^c Central Salt and marine chemicals research Institute, G B Marg, Bhavnaga, Gujarat, 364002.

Synthesis of bare γ-FeOOH:

In a typical synthesis, 100ml distilled water was taken in the 250ml round bottom flask and N₂ was pursed for 5min. Then FeSO₄.7H₂O (0.6 mmol) was added into the flask with continuous stirring in ambient condition. To that solution mixture, hydrazine hydrate (3.6mmol) was added slowly and stirring was continued for 5 min. A greenish black colour suspension was obtained. Then, the nitrogen supply was turned off and constant air flow (20ml/minute) through the solution was started and continued for 5 hours. During air flow the black colour was gradually changed to dark orange colour. Then the solution was centrifuge to collect the suspended materials, washed with water followed by ethanol thoroughly and dried at 60 $^{\circ}$ C to form γ -FeOOH-NS

Synthesis of bare CeO₂:

In a typical synthesis, 100ml distilled water was taken in the 250ml round bottom flask and N_2 was pursed for 5min. Then Cerium (III) acetate hydrate (0.6 mmol) was added into the flask with continuous stirring in ambient condition. To that solution mixture, hydrazine hydrate (3.6mmol) was added slowly and stirring was continued for 5 min. Then, the nitrogen supply was turned off and constant air flow (20ml/minute) through the solution was started and continued for 5 hours. Then the solution was centrifuged to collect the suspended materials, washed with water followed by ethanol thoroughly and dried at 60 $^{\circ}$ C to form CeO₂.

Procedure for the calculation of Turnover Frequency (TOF) from OER Current Density.

To ascertain the enhancement of activity post-doping of CeO₂ in Mn₃O₄@ γ -FeOOH, turnover frequencies (TOF) of all catalysts (Mn₃O₄, Mn₃O₄@CeO₂, Mn₃O₄@ γ -FeOOH, and Mn₃O₄@CeO₂/ γ -FeOOH) were calculated. TOF calculation was made utilizing the re-dox area of CV, which provide the electrochemically active atoms present in the catalyst.^{S-1} The respective reduction area is illustrated in Fig. S1. It is evident that the TOF value of Mn₃O₄@CeO₂/ γ -FeOOH (0.603S⁻¹) is better to then the other catalysts Mn₃O₄@CeO₂, Mn₃O₄@ γ -FeOOH (0.0138 S⁻¹, 0.056 S⁻¹, 0.241 S⁻¹). Hence, our foremost active catalyst can produce the number of oxygen molecules compared to our unadorned material per unit time.

In our study, the Turnover Frequency (TOF) was calculated based on the assumption that only the surface-active metal ions, which underwent a redox reaction just prior to the onset of Oxygen evolution reaction (OER), were involved in the OER process. The corresponding expression is:

$$TOF = (j \times N_A) / (F \times n \times \Gamma)$$
(1)

Where, j is the current density, N_A is the Avogadro number, F is the Faraday constant, n is the Number of electrons transferred during the reaction, Γ is the surface concentration of the catalyst.

Fig. S1 The area of reduction peaks of the Mn_3O_4 , Mn_3O_4 ($@CeO_2$, Mn_3O_4 ($@\gamma$ -FeOOH and Mn_3O_4 ($@CeO_2/\gamma$ -FeOOH.

TOF calculation for Mn₃O₄@CeO₂/γ-FeOOH:

Calculated area associated with the reduction of metal ions of $Mn_3O_4@CeO_2/\gamma$ -FeOOH = 0.000041440 VA.

Hence, the associated charge is = $0.000041440 \text{ VA} / 0.005 \text{ Vs}^{-1}$

= 0.08288 C

Now, the number of electron transferred is = $0.08288 \text{ C} / (1.602 \times 10^{-19} \text{ C})$

$$= 5.17 \times 10^{17}$$

It is anticipated that the reduction a single electron transfer process, the number of electrons involved directly corresponds to the number of surface-active sites.

Hence, the number of M active sites participating in OER is = 5.17×10^{17}

Therefore, surface concentration of active sites in the Mn₃O₄@CeO₂/ γ -FeOOH is 5.17 × 10¹⁷.

The current density at 1.48V potential was evaluated from the backward LSV curve of

Mn₃O₄@CeO₂/γ-FeOOH.

Hence, from equation (1)

$$\mathbf{TOF_{1.48 V}} = (200 \times 10^{-3}) \times (6.022 \times 10^{23}) / (96485 \times 4 \times 5.17 \times 10^{17})$$

= **0.603 s^{-1**

Similarly, TOF of other catalyst was also calculated following the identical procedure and the values are as follows.

Catalyst	Turnover Frequency (TOF) _{1.48V}		
Mn ₃ O ₄ @CeO ₂ /γ-FeOOH	0.603 s ⁻¹		
Mn ₃ O ₄ @γ-FeOOH	0.241s ⁻¹		
Mn_3O_4 (a) CeO ₂	0.056s ⁻¹		
Mn ₃ O ₄	0.0138s ⁻¹		

Procedure for the calculation of Faradaic efficiency of Mn₃O₄@CeO₂/γ-FeOOH.

Faradaic efficiency was calculated using the Eq. (1)

 $Faradaic efficiency = \frac{experimental \,\mu mol \, of \, 02 \, gas}{theoritical \,\,\mu mol \, of \, 02 \, gas} \times 100 \qquad (1)$

The theoretical amount of O₂ gas was calculated using Faraday's laws.

 $n = \frac{I \times t}{z \times F} \quad (2)$ $= \frac{0.5 \times 4500}{4 \times 96484}$

= 5829 µmol

Where n = number of mol, I = current in ampere, t = time in second, z = electrons transfer (for OER= 4), and F = Faraday constant (96485 C mol⁻¹).

The theoretical amount of O_2 gas produced in 75 minutes after 1 h activation = 5829 μ mol

The experimental amount of gas (H_2+O_2) was evaluated from the water displacement method at ambient temperature and pressure.

Finally, the total number of moles of gas (H_2+O_2) produced in 75 minutes using water displacement is calculated by the Eq.(3) (considering the ideal behaviour of the gas)

$$PV = nRT \tag{3}$$

Where, V = produced volume of gas in litters, T = temperature in Kelvin, and R = 0.0821 L atm./mol.K, the ideal gas constant.

After 1 h of catalyst activation, the total moles of gas produced in 75 minutes using water displacement:

$$(1 \text{ atm})(0.435\text{L}) = n (0.0821 \text{ L atm}/ \text{ mol K}) (298\text{K})$$

$$n = \frac{(1 \text{ atm}) \times (0.435\text{L})}{(0.082 \text{ L atm}/ \text{ mol K}) \times (308 \text{ K})}$$

n=17223 umol

The molar ratio of produced hydrogen and oxygen in the gas mixture is 2:1

Thus, the moles of O₂ in the gas mixture produced in 75 minutes is

$$n \ 02 = 17223 \times \frac{1}{3}$$

= 5741 \u03c0 mol

Faradaic efficiency:
$$=\frac{5741 \ \mu mol}{5829 \ \mu mol} \times 100$$
$$= 98.4 \%$$

Similarly, the number of moles of gas produced in 75 minutes using water displacement after 50 hour stability:

$$(1 \text{ atm})(0.431\text{L}) = n (0.0821 \text{ L atm} / \text{ mol K}) (298\text{K})$$
$$n = \frac{(1 \text{ atm}) \times (0.431\text{L})}{(0.082 \text{ L atm} / \text{ mol K}) \times (308 \text{ K})}$$
$$n = 17065 \text{ }\mu\text{mol}$$

The molar ratio of produced hydrogen and oxygen in the gas mixture is 2:1

Thus, the moles of O_2 in the gas mixture produced in 75 minutes is

 $n 02 = 17065 \times \frac{1}{3}$ $= 5688 \,\mu \text{mol}$ Faradaic efficiency: $= \frac{5688 \,\mu \text{mol}}{5829 \,\mu \text{mol}} \times 100$ $= 97.5 \,\%$

Fig. S2 Theoretical and measured faradaic efficiency after 50 h stability of Mn_3O_4 (@ CeO₂ / γ -FeOOH.

Other Supporting Figures.

Fig. S3 XRD pattern of bare γ -FeOOH and CeO₂ synthesized in absence of Mn-acetate, the precursor of Mn₃O₄. The synthesis was performed following identical condition of Mn₃O₄ synthesis.

Fig. S4 EDX elemental mapping of the synthesized $Mn_3O_4@CeO_2/\gamma$ -FeOOH nanocubes.

Fig. S5 HR-TEM image of Mn_3O_4 nanocube.

Fig. S6 TEM images of $Mn_3O_4@CeO_2/\gamma$ -FeOOH indicating the formation of γ -FeOOH nanosheet outside of Mn_3O_4 nanocubes in addition to surface of the cubes. The fringe structure

Fig. S7 TEM EDX elemental mapping images of $Mn_3O_4@CeO_2/\gamma$ -FeOOH

Fig. S8 XPS survey spectra of different samples.

Fig. S9 The nitrogen adsorption desorption isotherm and respective pore size distribution of the synthesized bare Mn_3O_4 nano-cube and $Mn_3O_4@CeO_2/\gamma$ -FeOOH nanocomposite.

Fig. S10 CV curves at varying scans rate of 50, 60, 70, 80, 90 mV S⁻¹ of different samples.

Fig. S11 Summarized OER performances of all the tested samples in bar diagram.

Fig. S12 LSV after and before stability a) OER b) HER.

Fig. S13XRD pattern of $Mn_3O_4@CeO_2/\gamma$ -FeOOH after 50h of chronopotentiometry experimentat 1.53 V to attain a current density of 1000mA cm⁻².

Fig. S14 SEM image of $Mn_3O_4@CeO_2/\gamma$ -FeOOH after 50h of chronopotentiometry experiment at 1.53 V to attain a current density of 1000mA cm⁻².

Fig. S15 XPS spectra of $Mn_3O_4@CeO_2/\gamma$ -FeOOH after 50h of chronopotentiometry experiment at 1.53 V to attain a current density of 1000mA cm⁻².

Fig. S16 HER chronoamperometric measurement as a function of different current densities of $Mn_3O_4@CeO_2/\gamma$ -FeOOH.

Supporting Tables

Table S1.Comparison of the OER activities of $Mn_3O_4@CeO_2/\gamma$ -FeOOH.

Electrocatalyst	Electrolyte	η ₁₀ Overpoten tial (mV)	η ₁₀₀ Overpotenti al (mV)	η ₅₀₀ Overp otenti al (mV)	Tafel (mV dec ⁻¹)	References
Mn ₃ O ₄ @CeO ₂ /γ-	1М КОН	190	240	280	34	This work
FeOOH						
MnFeO-NF-0.2	1М КОН	227	274	295		S-2
MnFeO-NF-0.4	1М КОН	157	225	257		S-2
MnFeO-NF-0.6	1М КОН	220	285	312		S-2
MnFeO-NF-0.8	1М КОН	243	319	356		S-2
MnFeO-NF-1	1М КОН	258	340	405		S-2
MnO ₂ -NF	1М КОН	342	433	464		S-2
Mn ₃ O ₄ -NF	1М КОН	339	438	481		S-2
Fe ₂ O ₃ -NF	1М КОН	318	432			S-2
Co _{0.85} Se/NC	1М КОН		406		93	S-3
Ce-NiCoP/NF	1М КОН		282		52.3	S-4
Mo-NiCoP/C	1М КОН		364		76.7	S-5
Mo-NiCoP/NF	1М КОН		326		49.4	S-6
Co(Ni)O _x @CoP _{x-3}	1М КОН		479		108.4	S-6
Ni ₂ P-CoCH/CFP	1М КОН		320		36	S-8
ho-LaNi ₅ /NF	1М КОН		347		82	S-9
Co-CoO/Ti ₃ C ₂ -MXene	1М КОН	196	400		47	S-10
Ni–W–P@HFC	1M KOH		380		88.3	S-11

FeMnZn/Mn-FeS	1М КОН	390	S-12
Cu(OH) ₂ /Cu	1М КОН	390	S-13
MCo ₂ O ₄ @MCo ₂ S ₄ @ PPy	1М КОН	395	S-14
CuO NCA	1М КОН	400	S-15
Pd	1M KOH	400	S-16
N-FeP	1M KOH	440	S-17
Fe ₇ S ₈ /NGF	1М КОН	450	S-18
Ni ₂ Mo ₃ N/NF	1М КОН	392	S-19
MoSe ₂ -Ni ₃ Se ₂ /NF	1М КОН	395	S-20
CoFe–LDH /CoFe ₂ O ₄ /NF	1М КОН	400	S-21

Table S2.Comparison of the HER activities of $Mn_3O_4@CeO_2/\gamma$ -FeOOH

Electrocatalyst	Electrolyte	η ₁₀ Overpotential (mV)	η ₂₀ Overpotential (mV)	References
Mn ₃ O ₄ @CeO ₂ /γ–FeOOH	1М КОН	180	190	This Work
FeMnZn/Mn-FeS	1М КОН		118	S-12
Fe1-xCoxS ₂ /CNT	1M KOH		120	S-22
NiOx NPs	1M KOH		174	S-23
Co ₂ P	1M KOH		171	S-24
CNTs@NiP ₂ /NiP	1M KOH		137	S-25
FeCoNi–	1M KOH		151	S-26
LTH/NiCo ₂ O ₄ /CC				
Cu@Cu ₂ S	1M KOH		203	S-27

VC–NS	1M KOH]	120	S-28
MoP/Mo ₂ N	1М КОН]	165	S-29
Co ₂ P	1М КОН]	167	S-30
Ni(OH) ₂	1M KOH]	170	S-31
m–NiS _{x–0.5} /NF	1М КОН]	137	S-32
Ni–NiO/N–rGO	1M KOH]	160	S-33
CoS _x -Ni ₃ S ₂ /NF	1M KOH]	146	S-34
Ni ₃ S ₂ /Co ₃ S ₄	1M KOH]	150	S-35
NiCo ₂ O ₄	1M KOH		160	S-36
Co–B/Ni	1M KOH		200	S-37
Co_3O_4/MoS_2	1M KOH		221	S-38

Table S3.Comparison of the overall water splitting performance of reported catalysts.

Catalyst	Electrolyte	Potential	Current density	Reference
Mn ₃ O ₄ @CeO ₂ /γ-FeOOH	1М КОН	1.55 V	10 mAcm ⁻²	This work
FeMnZn/Mn-FeS	1M KOH	1.62 V	10 mAcm ⁻²	S-12
NF	1М КОН	1.65 V	10 mAcm ⁻²	S-39
Ni ₃ Se ₂	1М КОН	1.65 V	10 mAcm ⁻²	S-40
xNiP@SS	1М КОН	1.77 V	10 mAcm ⁻²	S-41
CoP@NF CoP/CoO@NF	1M KOH	1.62 V	10 mAcm ⁻²	S-42
CoP/VGNHs	1M KOH	1.63 V	10 mAcm ⁻²	S-43
CoS ₂ /CC	1М КОН	1.66 V	10 mAcm ⁻²	S-44
Co ₂ N/TM/Co–Pi/TM	1M KOH	1.78 V	10 mAcm ⁻²	S-45
Co _{0.4} Fe _{0.6} LDH/g-	1M KOH	1.61 V	10 mAcm ⁻²	S-46

CNx				
CoFe@N-GCNCs-	1M KOH	1.63 V	10 mAcm ⁻²	S-47
700				
CoFe ₂ O ₄	1М КОН	1.63 V	10 mAcm ⁻²	S-48
CoNiN@NiFe LDH	1М КОН	1.63 V	10 mAcm ⁻²	S-49
CuFe Composite	1М КОН	1.64 V	10 mAcm ⁻²	S-50
NiCo ₂ O ₄	1М КОН	1.65 V	10 mAcm ⁻²	S-51
FeCoS/C	1М КОН	1.66 V	10 mAcm ⁻²	S-52
DLD-FeCoP@CNT	1М КОН	1.67 V	10 mAcm ⁻²	S-53
Ni–Co–S/CF	1М КОН	1.67 V	10 mAcm ⁻²	S-54
NiMoP ₂	1М КОН	1.67 V	10 mAcm ⁻²	S-55
FeCoP	1М КОН	1.68 V	10 mAcm ⁻²	S-56
Ni/MoN@NCNT/CC	1М КОН	1.69 V	10 mAcm ⁻²	S-57
NiS/MoS ₂	1М КОН	1.69 V	10 mAcm ⁻²	S-58
NiCo ₂ O ₄	1М КОН	1.72 V	10 mAcm ⁻²	S-59
Cu ₂ S–Ni ₃ S ₂	1М КОН	1.77 V	10 mAcm ⁻²	S-60
Co–Fe binary oxide	1М КОН	1.92 V	10 mAcm ⁻²	S-61
Ni–Fe–Doped K0.23MnO ₂	1М КОН	1.62 V	10 mAcm ⁻²	S-62
Fe–Ni–Cr	1M KOH	1.64 V	10 mAcm ⁻²	S-63
Te/Fe-NiOOH	1M KOH	1.65 V	10 mAcm ⁻²	S-64
Fe–Ni2P/MoSx/NF	1М КОН	1.68 V	10 mAcm ⁻²	S-65
FexNiy/CeO ₂	1М КОН	1.70 V	10 mAcm ⁻²	S-66
CoFeNiO	1М КОН	1.96 V	10 mAcm ⁻²	S-67
Co _{0.85} Se/NC	1M KOH	1.7	10 mAcm ⁻²	S-68

Catalyst	Electrolyte	Potential (2V) Current density (mAcm ⁻²)	Reference
Mn ₃ O ₄ @CeO ₂ /γ-FeOOH AEM	1M KOH	366	This Work
∥ Mn ₃ O ₄ @CeO ₂ /γ-FeOOH			
Pt/C AEM IrO ₂	1М КОН	101	This Work
NiCoTi/Ti AEM NiCoTi/Ti	1M KOH	180	S69
NiCo/r-GO AEM Co ₃ O ₄ /r-GO	1M KOH	105	S70
CuCoO AEM Ni	1M KOH	156	S71
Cu _x Co _{3-x} O ₄ AEM Ni	1M KOH	100	872
NiCo ₂ O ₄ /Ni AEM Ni	1M KOH	106	873
γ-FeOOH-NS AEM γ-FeOOH-	1M KOH	209	S74
NS			

Table S4.Comparison of the AEM electrolyzer performance with relevant literature

References.

- S1. S. S. Roy, A. Karmakar, R. Madhu, S. Nagappan, H. N Dhandapani and S. Kundu, ACS Appl. Energy Mater., 2023, 6, 8818-8829.
- S2. J. Luo, W. H. Guo, Q. Zhang, X. H. Wang, L. Shen, H. C. Fu, L. L. Wu, X. H. Chen, H. Q. Luo and N. B. Li, *Nanoscale*, 2020,12, 19992-20001.
- W.-W. Tian, Y.-D. Ying, J.-T. Rena and Z.-Y. Yuan, J. Mater. Chem. A., 2023, 11, 8024-8037.
- S4. T. Zhao, G. Xu, B. Gong, J. Jiang and L. Zhang, *Nano Res.*, 2024, 17, 282-289.
- S5. J. Lin, Y. Yan, C. Li, X. Si, H. Wang, J. Qi, J. Cao, Z. Zhong, W. Fei and J. Feng, *Nano-Micro Lett.*, 2019, 11, 55.
- S6. Y. Zhao, J. Chen, S. Zhao, W. Zhou, R. Dai, X. Zhao, Z. Chen, T. Sun, H. Zhang and A. Chen, J. Alloys Compd., 2022, 918, 165802.
- S7. T. Zhang, X. Ren, F. Ma, X. Jiang, Y. Wen, W. He, L. Hao, C. Zeng, H. Liu, R. Chen, H. Zhang and H. Ni, *Appl. Mater. Today*, 2023, 34, 101912.
- S8. S. Zhang, C. Tan, R. Yan, X. Zou, F.-L. Hu, Y. Mi, C. Yan and S. Zhao, Angew. Chem. Int. Ed., 2023, 62, 202302795.
- S9. Y. Wu, Y. Liu, K. Liu, L. Wang, L. Zhang, D. Wang, Z. Chai and W. Shi, Green Energy Environ., 2022, 7, 799-806.
- S10. D. Guo, X. Li, Y. Jiao, H. Yan, A. Wu, G. Yang, Y. Wang, C. Tian and H. Fu, *Nano Res.*, 2022, 15, 238-247.
- S11. T. Li, H. Chen, Z. Chen, Z. Xue, X. Zhang, and B. Hui, ACS Sustain Chem Eng., 2023, 11, 14549-14558.
- S12. L. Huang, R. Yao, Z. Li, J. He, Y. Li, H. Zong, S. Han, J. Lian, Y.-G. Li and X. Ding, *Green Chem.*, 2023, 25, 4326-4335.
- S13. P. Babar, A. Lokhande, V. Karade, B. Pawar, M. G. Gang, S. Pawar and J. H. Kim, J. Colloid Interface Sci., 2019, 537, 43-49.
- S14. D. Zhao, H. Liu and X. Wu, Nano Energy, 2019, 57, 363-370.
- S15. W.-L. Xiong, M. I. Abdullah and M.-M. Ma, *Chin. J. Phys.*, 2018, **31**, 806-812.
- S16. K. S. Joya, M. A. Ehsan, N.-U.-A. Babar, M. Sohail and Z. H. Yamani, J. Mater. Chem. A, 2019, 7, 9137-9144.
- S17. M. Yang, J.-Y. Xie, Z.-Y. Lin, B. Dong, Y. Chen, X. Ma, M.-L. Wen, Y.-N. Zhou, L. Wang and Y.-M. Chai, *Appl. Surf. Sci.*, 2020, **507**, 145096.
- S18. X. Huang, S. Wang, X. Zhang and L. Liu, Int. J. Electrochem. Sci., 2021, 16, 210433.
- S19. S. H. Park, S. H. Kang and D. H. Youn, *Materials*, 2021, 14, 4768.

- S20. Y. Liu, Y. Liu, Y. Yu, C. Liu and S. Xing, Front. Energy res., 2022, 16, 483-491.
- S21. Z. Guo, X. Wang, F. Yang and Z. Liu, J. Alloy. Compd., 2022, 895, 162614.
- S22. H. Li, S. Chen, H. Lin, X. Xu, H. Yang, L. Song and X. Wang, *Small*, 2017, 13, 1701487.
- S23. Z. Huang, Z. Chen, Z. Chen, C. Lv, M. G. Humphrey and C. Zhang, *Nano Energy*, 2014, 9, 373-382.
- S24. S. Singh, D. C. Nguyen, N. H. Kim and J. H. Lee, Chem. Eng. J., 2022, 442, 136120.
- S25. Y. Liu, Y. Bai, Y. Han, Z. Yu, S. Zhang, G. Wang, J. Wei, Q. Wu and K. Sun, ACS Appl. Mater. Interfaces, 2017, 9, 36917-36926.
- S26. T. Duy Thanh, H. Van Hien, L. Huu Tuan, N. H. Kim and J. H. Lee, *J. Mater. Chem. A*, 2020, 8, 14746-14756.
- S27. X. Peng, L. Hu, L. Wang, X. Zhang, J. Fu, K. Huo, L. Y. S. Lee, K.-Y. Wong and P. K. Chu, *Nano Energy*, 2016, 26, 603-609.
- S28. Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang, Y. Xie, L. Wang, C. Tian and H. Fu, Angew Chem Int Edit, 2021, 60, 6673-6681.
- S29. C. Lv, X. Wang, L. Gao, A. Wang, S. Wang, R. Wang, X. Ning, Y. Li, D. W. Boukhvalov, Z. Huang and C. Zhang, ACS Catal., 2020, 10, 13323-13333.
- S30. F. Jing, Q. Lv, J. Xiao, Q. Wang and S. Wang, J. Mater. Chem. A, 2018, 6, 14207-14214.
- S31. X. Liu, W. Liu, M. Ko, M. Park, M. G. Kim, P. Oh, S. Chae, S. Park, A. Casimir, G. Wu and J. Cho, *Adv. Funct. Mater.*, 2015, 25, 5799-5808.
- S32. L. Jiang, N. Yang, C. Yang, X. Zhu, Y. Jiang, X. Shen, C. Li and Q. Sun, *Appl. Catal.*, *B*, 2020, 269, 118780.
- S33. H. Su, S. Song, S. Li, Y. Gao, L. Ge, W. Song, T. Ma and J. Liu, *Appl. Catal.*, B, 2021, 293, 120225.
- S34. X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang and Z. Lin, Angew Chem Int Edit, 2016, 55, 6290-6294.
- S35. W. Hao, R. Wu, R. Zhang, Y. Ha, Z. Chen, L. Wang, Y. Yang, X. Ma, D. Sun, F. Fang and Y. Guo, *Adv. Energy Mater.*, 2018, 8, 1801372.
- S36. A. Muthurasu, V. Maruthapandian and H. Y. Kim, Appl. Catal., B, 2019, 248, 202-210.
- S37. J. Hu, C. Zhang, L. Jiang, H. Lin, Y. An, D. Zhou, M. K. H. Leung and S. Yang, *Joule*, 2017, 1, 383-393.
- S38. Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang and X. Feng, *Energy Environ. Sci.*, 2016, 9, 478-483.
- S39. R. Ding, S. Cui, J. Lin, Z. Sun, P. Du and C. Chen, Catal. Sci. Technol., 2017, 7, 3056-3064.
- S40. J. Shi, J. Hu, Y. Luo, X. Sun and A. M. Asiri, Catal. Sci. Technol., 2015, 5, 4954-4958.

- S41. A. Z. Alhakemy, A. B. A. A. Nassr, A. E.-H. Kashyout and Z. Wen, *Sustainable Energy and Fuels*, 2022, **6**, 1382-1397.
- S42. B. Qiu, A. Han, D. Jiang, T. Wang and P. Du, ACS Sustain. Chem. Eng., 2019, 7, 2360-2369.
- S43. T. Linh, S.-K. Jerng, S. B. Roy, J. H. Jeon, K. Kim, K. Akbar, Y. Yi and S.-H. Chun, ACS Sustain. Chem. Eng., 2019, 7, 4625-4630.
- S44. W. Fang, D. Liu, Q. Lu, X. Sun and A. M. Asiri, *Electrochem. Commun.*, 2016, 63, 60-64.
- S45. L. Zhang, L. Xie, M. Ma, F. Qu, G. Du, A. M. Asiri, L. Chen and X. Sun, *Catal. Sci. Technol.*, 2017, 7, 2689-2694.
- S46. T. Bhowmik, M. K. Kundu and S. Barman, ACS Appl. Energy Mater., 2018, 1, 1200.
- S47. H.-J. Niu, Y.-P. Chen, R.-M. Sun, A.-J. Wang, L.-P. Mei, L. Zhang and J.-J. Feng, J. Power Sources, 2020, 480, 229107.
- S48. B. Debnath, S. Parvin, H. Dixit and S. Bhattacharyya, Chemsuschem, 2020, 13, 3875-3886.
- S49. J. Wang, G. Lv and C. Wang, *Appl. Surf. Sci.*, 2021, **570**, 151182.
- S50. A. I. Inamdar, H. S. Chavan, B. Hou, C. H. Lee, S. U. Lee, S. Cha, H. Kim and H. Im, *Small*, 2020, 16, 1905884.
- S51. X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang and Z. Lin, *Angew Chem Int Edit*, 2016, 55, 6290-6294.
- S52. W. Wang, Y. Xu, J. Yao, X. Liu, Z. Yin and Z. Li, *Dalton Trans.*, 2020, 49, 13352-13358.
- S53. B. Wang, Y. Chen, Q. Wu, Y. Lu, X. Zhang, X. Wang, B. Yu, D. Yang and W. Zhang, J. *Mater. Sci. Technol.*, 2021, 74, 11-20.
- S54. T. Liu, X. Sun, A. M. Asiri and Y. He, Int. J. Hydrogen Energy, 2016, 41, 7264-7269.
- S55. X.-D. Wang, H.-Y. Chen, Y.-F. Xu, J.-F. Liao, B.-X. Chen, H.-S. Rao, D.-B. Kuang and C.-Y.Su, J. Mater. Chem. A, 2017, 5, 7191-7199.
- S56. K. L. Sun, K. H. Wang, T. P. Yu, X. Liu, G. X. Wang, L. H. Jiang, Y. Y. Bu and G. W. Xie, *Int. J. Hydrogen Energy*, 2019, 44, 1328-1335.
- S57. P. Wang, J. Qi, C. Li, X. Chen, T. Wang and C. Liang, Chemelectrochem, 2020, 7, 00023.
- S58. Y. Zheng, P. Tang, X. Xu and X. Sang, J. Solid State Chem., 2020, 292, 121644.
- S59. R. Zhao, D. Cui, J. Dai, J. Xiang and F. Wu, Sustain. Mater. Techno., 2020, 24, e00151.
- S60. K. S. Bhat and H. S. Nagaraja, Chemistryselect, 2020, 5, 2455-2464.
- W. Adamson, X. Bo, Y. Li, B. H. R. Suryanto, X. Chen and C. Zhao, *Catal. Today*, 2020, 351, 44-49.
- S62. H. Liao, X. Guo, Y. Hou, H. Liang, Z. Zhou and H. Yang, *Small*, 2020, 16, 1905223.
- S63. J. Zhang, H. Jang, L. L. Chen, X. L. Jiang, M. G. Kim, Z. X. Wu, X. Liu and J. Cho, *Mater. Chem. Phys.*, 2020, 241, 122375.

- S64. S. Ibraheem, X. T. Li, S. S. A. Shah, T. Najam, G. Yasin, R. Iqbal, S. Hussain, W. Y. Ding and F. Shahzad, ACS Appl. Mater. Interfaces, 2021, 13, 10972-10978.
- S65. X. L. Zhang, C. Liang, X. Y. Qu, Y. F. Ren, J. J. Yin, W. J. Wang, M. S. Yang, W. Huang and X. C. Dong, *Adv. Mater. Interfaces*, 2020, 7, 1901926.
- L. Chen, H. Jang, M. G. Kim, Q. Qin, X. Liu and J. Cho, *Inorg. Chem. Front.*, 2020, 7, 470-476.
- S67. Y. He, D. Aasen, A. McDougall, H. Yu, M. Labbe, C. Ni, S. Milliken, D. G. Ivey and J. G. C. Veinot, *Chemelectrochem*, 2021, 8, 1391-1392.
- S68. W.-W. Tian, Y.-D. Ying, J.-T. Ren and Z.-Y. Yuan, J. Mater. Chem. A., 2023, 11, 8024-8037.
- S69. P. Anesan, A. Sivanantham, and S. Shanmugam, *ACS Appl. Mater. Interfaces*, 2017, **14**, 12416–12426
- S70. S. Kamali, M. Zhiani and H. Tavakol, Renew Energ., 2020, 154, 1122-1131
- S71. E. Lopez-Fernandez, J. Gil-Rostra, C. Escudero, I. J. Villar-Garcia, F. Yubero, A. D. Consuegra and A. R. Gonzalez-Elipe, J. Power Sources, 2021, 485, 229217
- S72. E. Lopez-Fernandez, J. Gil-Rostra, J. P. Espinos, A. R. Gonzalez-Elipe, F. Yubero and A. de Lucas-Consuegra, J. Power Sources, 2019, 415 136-144.
- S73. D. Chanda, J. Hnat, T. Bystron, M. Paidar and K. Bouzek, *J. Power Sources*, 2017, **347**, 247-258.
- S74 D. K. Bora, D. Ghosh, A. Jana, R. K. Nagarale, and A. B. Panda, ACS Appl. Eng. Mater., 2024, 2, 975-987.