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1 Experimental
1.1. Synthesis of HEP-EDDA

The synthesis of HEP-EDDA was adapted from the reported procedure.” A flame-dried round
bottom flask (RBF-1) was charged with 4,4’-(ethyne-1,2-diyl)dianiline (EDDA) (0.100 g, 0.4807
mmol) and dissolved in 1,4-dioxane (30 mL). Diisopropylamine (0.5 mL) was added and stirred
for 20 min in ice-cold water. In RBF-2, 2,5,8-trichloro-s-heptazine (HEP) (0.088 g, 0.3205 mmol)
was dissolved in 20 mL of 1,4-dioxane. Then, the solution from RBF-2 was dropwise added to the
RBF-1 over a period of 20 min with constant stirring. The RBF-1 was flash-frozen at -196 °C under
the N2 atmosphere. Then, the system was degassed by a vacuum pump, and the solution was
liquefied. After the three cycles of freeze-pump-thaw, the RBF-1 was sealed and stirred at room
temperature for 1 h. Then, the reaction mixture was heated at 110°C for 72 h to get the light yellow
precipitate of HEP-EDDA. The precipitates were washed with acetone, hexane, ethyl acetate,
dimethylsulfoxide (DMSO), methanol, 1,4-dioxane, and THF. For further purification the
precipitates were soxhlet extracted with 1:1 mixture of THF and methanol for 24 h and then

overnight kept at 120 °C in the vacuum oven.
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Scheme S1: Synthesis of HEP-EDDA.



1.2. Synthesis of HEP-BDDA

The synthesis of HEP-BDDA was adapted from the reported procedure.” A flame-dried round
bottom flask (R1) was charged with 4,4’-(buta-1,3-diyne-14-diyl)dianiline (BDDA) (0.080 g,
0.3448 mmol) and dissolved in 1,4-dioxane (30 mL). Then diisopropylamine (0.5 mL) was added
and stirred for 20 min in ice-cold water. In round bottom flask (R2), 2,5,8-trichloro-s-heptazine
(HEP) (0.063 g, 0.2298 mmol) was dissolved in 20 mL of 1,4-dioxane. Then, the HEP from R2
was dropwise slowly added to the R1 with constant stirring. The R1 was flash-frozen at -196 °C
under the N2 atmosphere. Then, the system was degassed by a vacuum pump, and the solution was
liquefied. After the three cycles of freeze-pump-thaw, the R1 was sealed and stirred at room
temperature for 1 h. Then the reaction mixture was heated at 110 °C for 72 h to get the light yellow
precipitate of HEP-EDDA. The precipitates were washed with acetone, hexane, ethyl acetate,
dimethylsulfoxide (DMSO), methanol, 1,4-dioxane, and THF. For further purification the
precipitates were soxhlet extracted with a (1:1) mixture of THF and methanol for 24 h and then

dried overnight kept at 120 °C in the vacuum oven.
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Scheme S2: Synthesis of HEP-BDDA.



1.3. Synthesis of HEP-BTET

The synthesis of HEP-BTET was adapted from the reported procedure.® A flame-dried round
bottom flask (RBF-1) was charged with 4,4’,4”-(benzene-1,3,5-triyltris(ethyne-2,1-diyl)trianiline
(BTET) (0.080 g, 0.0.1814 mmol) and dissolved in 1,4-dioxane (30 mL). Then Diisopropylamine
(0.5 mL) was added and stirred for 20 min in ice-cold water. In RBF-2, 2,5,8-trichloro-s-heptazine
(HEP) (0.052 g, 0.1884 mmol) was dissolved in 20 mL of 1,4-dioxane. Then, the solution from
RBF-2 was added dropwise to the RBF-1 over a period of 20 min with constant stirring. The RBF-
1 was flash-frozen at -196 °C under the N, atmosphere. Then, the system was degassed by a vacuum
pump, and the solution was liquefied. After the three cycles of freeze-pump-thaw, the RBF-1 was
sealed and stirred at room temperature for 1 h. Then, the reaction mixture was heated at 110°C for
72 h to obtain the light yellow precipitate of HEP-EDDA. The precipitates were washed with
acetone, hexane, ethyl acetate, dimethylsulfoxide (DMSO), methanol, 1,4-dioxane, and THF. For
further purification the precipitates were soxhlet extracted with (1:1) mixture of THF and methanol

for 24 h and then overnight kept at 120 °C in the vacuum oven.
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Scheme S3: Synthesis of HEP-BTET.



2. Apparent quantum yield (AQY %o) calculations

It is defined as the number of electrons involved in the photocatalytic reduction to the number of
incident photons.”® The apparent quantum yield (AQY) for the photoreduction reaction was
calculated with 5 mg of the catalyst under light irradiation for 3 h using an Xe lamp (400 W) with
a band-pass filter of 500 nm. It is assumed that the incident photons are all absorbed by the sample.

The AQY was calculated according to the below equation:

Number of reacted electron

AQY (%) =

x 100 1)

Number of incident photons

As, two electrons are involved in the photoreduction of CO2 to CO. The above equation became:

2XNg % 100 = (2XMXN 4) % 100 = 2XMXN 4xhxc

Np (IXAXEXA)/(hXC) T IXAXEXA

AQY (%) =

X 100 2)
M = no of CO evolved

Na = Avogadro’s number

| = intensity of incident light (Wcm™)

A = area of irradiation (cm?)

t = time of irradiation (S)

h = Planck’s constant (Js)

¢ = the speed of light (ms™)

Ais the wavelength of monochromatic light (m)

3. General procedure for quantification of H20:

The quantification of H,O2 was carried out by iodometry method based on previous literature,**
100 pL solution from the reaction mixture was added to the freshly prepared solution of 450 pL of
0.4 molL™ potassium iodide (KI) aqueous solution, and 450 pL of 0.1 molL* potassium hydrogen
phthalate (CgHsKO4) aqueous solution, which was kept in the dark at low temperature for 30 min.

The produced H2.02 molecule produces triiodide anions (I3") by the reaction of (1Y) under the acidic



conditions (H202 + 31" + 2H" — I3+ 2H,0). The quantification of the amount of (I3") formed was

evaluated by UV-vis spectroscopy, (I3") having a strong absorbance at 350 nm.
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Figure S1: Powder X-ray diffraction of photocatalytic networks (a) HEP-EDDA, (b) HEP-BDDA, and (c) HEP-
BTET.
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Figure S2: Pore size distribution curves by NLDFT method of (a) HEP-EDDA, (b) HEP-BDDA, and (c) HEP-BTET.
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Figure S3: CO; uptake for HEP-BTET, HEP-BDDA, and HEP-EDDA at 273 K.
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Figure S4: Mott-Schottky plots of photocatalysts (a) HEP-EDDA, (b) HEP-BDDA, and (c) HEP-BTET.
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Figure S5: Thermogravimetric analysis of (a) HEP-EDDA, (b) HEP-BTET, and (c) HEP-BDDA in N, atmosphere.
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Figure S6: CO,-GC chromatogram of (a) HEP-EDDA, (b) HEP-BDDA, and (c) HEP-BTET for photoreduction of
COa.
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Figure S7: FTIR spectra before and after photocatalysis of (a) HEP-EDDA, (b) HEP-BDDA, and (c) HEP-BTET.
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Figure S8: N adsorption-desorption isotherm after photocatalysis of (a) HEP-EDDA, (b) HEP-BDDA, and (c)

HEP-BTET.
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Figure S9: Control experiments for photoreduction of CO,. Reaction condition: 5 mg catalyst, 3 mL H,0, CO- (1
atmosphere), and solar simulated light: 100 mW cm.
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Figure S10: GC-MS analysis using 3CO; as source of CO; after photoreduction reaction.
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Figure S11: EPR spectra of (a) HEP-EDDA, (b) HEP- BTET, and (c) HEP-BDDA at different experimental

conditions.
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Figure S12: (a) Optimized structure of the surface of repeating unit of HEP-BTET, (b) Absorption and activation of
the CO, molecule, (c) Formation of COOH Intermediate, and (d) Desorption of CO from the catalyst surface.

Table S1: Elemental Analysis of HEP-EDDA, HEP-BDDA and HEP-BTET under solvent-free conditions.

C (%) N (%) C/N C/N (Theoretical)
(Experimental)

HEP-EDDA 57.50 23.70 242 2.57
HEP-BDDA 60.14 21.86 2.75 2.85

HEP-BTET 60.76 16.79 3.61 3.42




Table S2: Comparison with the previously reported heptazine and triazine-based photocatalyst for CO, reduction.

Photocatalyst

Triazine based

Fe SAS/Tr-COF

20%-Ni-CTAB-CTF-1

CTF-Bpy-
Co[Ru(bpy)3]CI2
Ni(OH)2-CTF-1
PD@Imine-CTF

SnS2/S-CTFs

a-Fe203@Por-
CTFx/Ru(bpy)sCl2

CT-COF

CTF-BP

DA-CTF

Re-CTF-py

Heptazine based
Porous CsN7

d5-PCN-NSs

Light Source

Xe lamp

Xe lamp

Xe lamp

Xe lamp

Xe lamp

Xe lamp

Xe lamp

Xe lamp

Xe lamp

Xe lamp

Xe lamp

Xe lamp

Xe lamp

Reaction agents* and

Solvent

TEOA and MeCN/H20

TEOA and MeCN/H20

[Ru(bpy)sCl2].6H20
TEOA and MeCN/H20
[Ru(bpy)sCl2].6H20
/TEOA and MeCN/Hz20

TEOA and H20

TEOA and H20

[Ru(bpy)sCl2].6H20

TEOA and DMF

H20

TEOA and H.0/MeCN

TEOA and MeCN

TEOA and MeCN

Water

Co(bpy)s**/TEOA and
MeCN/H20

CO [(umolg*h?) and
selectivity (%0)]

980.30 and 96

1254.15 and 99

1200.00 and 84

38.66

85.3 and 92 %

123.60

8.00 and 93

102.70

4.60

4.00

353.05

6.88

39.30

Ref.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]



TCN(NH2) Xe lamp

g-CsN4 with nitrogen Xe lamp
vacancies
BIF-20@g-C 3N 4 Xe lamp
nanosheet
HEP-BTET solar simulated light

CoCly, 2,2-bipyridine/TEOA and
MeCN

CoCly, 2,2-bipyridine/TEOA and
MeCN

TEOA and MeCN

Water

* Reaction agents: Sacrificial agents and Photosensitizers.

103.60

56.90

53.90

8830.00 and ~98

Table S3: Gibbs free energies of different species involved during the photoreduction of CO,.

Species
Catalyst
Co,
CO,*
COOH*
CO*
CO
CHO*
OH*
H,0,
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