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Synthesis of g-C;N,
1 g of melamine, 1 g of cyanuric acid and 0.1 g of uramil were added to a solution of
ultrapure water and ethanol (volume ratio = 80:20), and stirred for 2 h. The resulting mixture

was the dried and the solids were placed into a porcelain boat. A calcination process was

carried out at 550°C for 2 h under nitrogen gas at a heating rate of 5°C/min.
Synthesis of MoSe,

Firstly, two separate solutions, solution A and solution B, were prepared. Solution A:
sodium molybdate (Na,MoQO,4:2H,0, 2.42 g) was added to ultrapure water (50 mL); solution
B: selenium (1.62 g) was added to ultrapure water (50 mL). Then, solution A was slowly
added to solution B during stirring to form a mixture. The mixture was transferred into a
PTFE reactor and subjected to a hydrothermal reaction at 200°C for 20 h. After cooling to
room temperature, the powder was washed with ultrapure water and dried at 40°C in a
vacuum oven.

Tab. S1 Composition of CSM samples
CN (g) Sc precursor (g) MoSe; (g)
CSM 1 0.2 0.01 0.01
CSM 2 0.2 0.01 0.02
CSM 3 0.2 0.01 0.03
CSM 4 0.2 0.005 0.02
CSM 5 0.2 0.02 0.02

Characterization
Other characterizations were carried out by transmission electron microscopy (TEM,

Tecnai G F20, FEI, USA), X-ray photoelectron spectroscopy (XPS, ESCALAB 250XI,
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Thermo, USA) and X-ray diffraction spectroscopy (XRD, D8 Advance, Bruker, GER).
Transient photocurrent responses and electrochemical impedance spectroscopy (EIS) and
photocurrent response tests were conducted using an electrochemical workstation (CHI660E,
CHI). A typical three-electrode system was utilized, where a platinum sheet (1 cm x 1 cm)
and a saturated calomel electrode (SCE) were used as the counter and reference electrodes,
respectively. The working electrodes were prepared by coating the samples inks on nickel
foam substrates (1 cm x 1 cm). The ink mixture comprised of solid samples (0.25 g), Nafion
solution (0.5 wt%, 10 pL) and ultrapure water (1.0 mL). During testing, a 300 W Xenon lamp
(PLS-SXE300, Beijing Perfectlight) with an ultraviolet cut-off filter (A > 420 nm) was used as
light source. The corresponding parameters in EIS test included a frequency range of 100 kHz
to 10 mHz with an amplitude of 5 mV. Electron spin-resonance spectroscopy (ESR, JES
FA200, JEOL, JPN) was performed to test the active species.
Analysis procedures

The concentration of tetrabromobisphenol A (TBBPA) was measured using ultra-high
performance liquid chromatography (UPLC, ACQUITY H-class, Waters) with Xbridge BEH
C18 column (2.1 mm X% 50 mm, 1.7 um). The wavelength of the PDA detector was set at 278
nm, and the sample injection volume was 1.0 pL. The mobile phase was a mixture of HPLC-
grade methanol and formic acid in ultrapure water (0.1%), which was delivered at 0.3 mL/min
through the column. A gradient expressed as the ratio of methanol was as follows: 0-1.0 min,
20%; 1.0-1.5 min, a linear increase from 20% to 50%; 1.5-3.0 min, hold at 50%; 3.0-3.5 min,
a linear decrease to 20%, and hold at 20% to 5.0 min. The concentration of Br ions was
measured by an ion chromatography (IC, ICS-5000+). The intermediates were analyzed using
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an ultra-high performance liquid chromatography coupled with Orbitrap mass spectrometer
(Dionex Ultimate 3000-Q Exactive Foucus, Thermo Fisher) with the electrospray ionization
(ESI) source under a negative mode. A full scan mode (m/z 50 to 500) was used, and capillary
voltage, cone voltages and desolvation temperature were 3.0 kV, 30 V, and 350°C,
respectively. The products ion scan (MS?) was carried out and compound discoverer software

was utilized for analysis.
Theoretical procedure

Density functional theory (DFT) calculaitons, including structural optimization, density
of states (DOS), difference charge density and Gibbs free energy, were conducted using
Vienna ab initio simulation package (VASP) and projector-augmented wave (PAW)
methods.S! The correlation interactions were based on the generalized gradient approximation
(GGA). The cut-off energy for the calculations was set to 450 eV,5253 and the force tolerance
was set to 0.02 eV/A. To avoid interaction between the two surfaces, a large vacuum gap of
15 A was selected in the periodically repeated slabs. The DOS and the difference charge
density analyses were performed with a convergence condition of 1.0 x107¢ eV/atom for total
energy. The computational hydrogen electrode (CHE) model was used to obtain free energy

change.
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MoSe, (100)
d=0.28 nm:

MoSe, (103):
d=0.24 nm

Fig. S1 HRTEM images of (a-b) CSM_2 and (c-d) CN.
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Fig. S2 EXAFS fitting profiles of the (a) CSM_2, (b) CN-Sc and (c) MoSe,-Sc at Sc K-edge.

Tab. S2 Structural parameters of the samples obtained from EXAFS fitting.

Sample  Bond type N R (A) AE; (eV) o2x103 (A2 R-factor
Sc-N 4.0 2.12+0.01 -4.9+3.6 6.6+£3.2

CSM_2 Sc-Se 1.3£0.5 2.73£0.01 13.6+11.1 17.3 0.008

CN-Sc Sc-N 5.5£1.7 2.13£0.03  -1.0+£3.8 6.2+£5.1 0.036

N, coordination number;

R, distance between absorber and backscatter atoms;
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AE,, inner potential correction to account for the difference in the inner potential between the sample and

the reference compound.

o2, Debye—Waller factor.
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Fig. S3 XRD patters of the samples.
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Fig. S4 Survey, Cls, N1s, Mo3d and Se3d XPS spectra of the samples.

In Cls XPS spectra, the CN-based samples exhibit traditional peaks associated with



96 adventitious carbon (284.8 V), C—N (286.2 e¢V) and N-C=N (288.2 ¢V). In N1s XPS spectra,
97 both CN-Sc and CSM_2 samples show peaks corresponding to Sc2p, with the exception of
98 peaks attributed to bi-coordinated nitrogen (Njc, 398.6 eV), tri-coordinated nitrogen (Njc,
99 399.5 eV) and NH, groups (400.7 e€V).545¢ The peaks of Sc2ps;, (400.4 eV) and Sc2pi),
100 (404.8 eV) are indiscernible due to the low Sc amount and overlapped with nitrogen.S” For
101 Mo3d and Se3d XPS spectra, both MoSe, and CSM_2 exhibit similar peaks corresponding to

102 Mo3ds;, Mo3d;,, and Se3ds),, Se3ds,, respectively.

103
104 Tab. S3 Fitting parameters from TRPL spectra.
ns [%0] 71 [A4] T [As] T3 [As] Tavg
CN 3.44[30.84] 1.15 [67.51] 16.27 [1.66] 424
CN-Sc 0.60 [46.82] 10.00 [3.63] 2.25[49.55] 3.59
CN-MoSe, 2.79 [34.02] 0.91 [64.29] 13.70 [1.69] 3.60
CSM 2 2.66 [37.84] 12.5 [1.99] 0.82 [60.17] 3.54
105
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107 Fig. S5 EIS spectra of the samples.
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122 Fig. S9 Photocatalytic performance of TBBPA degradation over Zn single-atom anchored g-
123 C;3N4/ black phosphorus nanosheets (Zn;-CN/Bpn)33, P-induced Fe and Co single-atoms
124 anchored g-C;Ny4 (P-Fe;Co/CN)%, black phosphorus nanosheets/FeSe,/g-C3Ny
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126 Hydroxyquinoline (Cu-TiO,@HQ) 513, g-C3N4-PANI/TiO, 54, Mo0S,/SnlngSg S15.
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129 Fig. S10 Time-dependent UV-vis absorption spectra of NBT solution in CSM_2+Light+H,0,

130 system, [NBT] = 0.1 mM.
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133 Fig. S11 *OH production in the CSM_2-induced photo-Fenton-like system by a salicylic acid
134 method.
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137 Fig. S12 MS and MS? spectra of the intermediate products in CSM_2-induced photo-Fenton-
138 like system.
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CSM_2 CN-MoSe,

151

152 Fig. S16 Difference charge density profiles of the adsorbed H,O, on the (a) CSM_2 and (b)

153 CN-MoSe,, yellow and cyan represent accumulation and depletion charge areas, respectively.

154
155 Tab. S4 Bader charge transfer (Aq) in CSM_2.
Atom Aq
10 0.023353
20 0.006041
3H -0.004545
4H -0.00758
5N -0.105924
6N -0.080391
TN 0.002475
&N -0.100209
9Sc -0.037826
10Se -0.010151
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