Supporting Information

Evaluating the phase-dependent electrocatalytic activity of manganese

phosphides for hydrogen evolution reaction

Kyeong-Ho Kim^{1,2,†}, Yoo Sei Park^{3,4,†}, Jong Min Lee^{5,†}, Min Ho Seo^{6,*}, Seong-Hyeon Hong^{1,*} and

Sung Mook Choi^{3,7,*}

Affiliation

¹Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 151-744, Republic of Korea

²Department of Materials Science and Engineering, Pukyong National University, Busan 48513, Republic of Korea

³Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea

⁴Department of Advanced Material Engineering, Chungbuk National University, 1 Chungdaero, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea

⁵Fuel Cell Research & Demonstration Center, Hydrogen Energy Research Division, Korea Institute of Energy Research, Buan-gun 56332, Republic of Korea

⁶Department of Nanotechnology Engineering, Pukyong National University, Busan 48547, Republic of Korea

⁷Advanced Materials Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea

[†]These authors contributed equally to this work.

* Corresponding author Dr. Sung Mook Choi, Prof. Seong-Hyeon Hong, Prof. Min Ho Seo

E-mail: akyzaky@kims.re.kr, shhong@snu.ac.kr, foifrit@pknu.ac.kr

Fig. S1. Energy convergence with k-point mesh for MnP (red), Mn_2P (blue), and MnP_4 (green). Black markers indicate k-points used for bulk optimization

Fig. S2. Surface energies of various facets of MnP, Mn₂P, and MnP₄. Surface energies $(eV/Å^2)$ for different low-index facets of (a) MnP, (b) Mn₂P, and (c) MnP₄, respectively.

Fig. S3. The XRD pattern of as-milled powders with Mn and P (1:4) for 20 h. The reference peaks for Mn_2P (ICDD # 01-089-2741, blue solid line), MnP (ICDD # 00-051-0942, red solid line), and MnP_4 (ICDD # 01-072-0949, green solid line) are included.

Fig. S4. XPS spectra of commercial red phosphorus for (a) survey and (b) P 2p, respectively.

Fig. S5. SEM images of as-prepared (a) Mn_2P , (b) MnP, and (c) MnP_4 nanoparticles, respectively, and (d) their particle size distributions. SEM images of (e) Mn_2P/Gr , (f) MnP/Gr, and (g) MnP_4/Gr nanocomposites, respectively.

Fig. S6. BET nitrogen adsorption isothermal graphs for the determination of the specific surface areas for (a) Mn_2P , (b) MnP, and (c) MnP_4 nanoparticles, respectively.

Fig. S7. Low magnification TEM images of (a) Mn_2P , (b) MnP, and (c) MnP_4 nanoparticles, respectively, and EDS spectra and detected compositions for as-prepared (d) Mn_2P/Gr , (e) MnP/Gr, and (f) MnP_4/Gr nanocomposites, respectively.

Fig. S8. Cyclic voltammetry of (a) Mn/Gr, (b) Mn_2P/Gr , (c) MnP/Gr, and (d) MnP₄/Gr nanocomposites in non-faradaic region with different scan rates (10, 20, 40, 80, and 160 mV s⁻¹) measured in 1 M KOH.

Fig. S9. Double layer capacitance (C_{dl}) of (a) Mn/Gr, (b) Mn₂P/Gr, (c) MnP/Gr, and (d) MnP₄/Gr nanocomposites.

Fig. S10. (a) Electrochemically active surface areas (ECSAs) and (b) HER polarization curves normalized by ECSA of Mn/Gr, Mn_2P/Gr , MnP/Gr, and MnP_4/Gr nanocomposites.

Fig. S11. XPS spectra of MnP/Gr electrodes before and after HER for (a) Mn 2p and (b) P 2p, respectively.

Fig. S12. (a) XRD patterns calculated by DFT and (b) crystal structure illustrations of MnP, Mn_2P , and MnP_4 phases.

Fig. S13. Crystal structure illustrations of surface with stable surface energy for (a) MnP (101), (b) Mn_2P (111), and (c) MnP_4 (100), respectively.

Fig. S14. Adsorption energy of stable hydrogen intermediates on Mn* and P* active sites

Fig. S15. Adsorption energy of H_2O on (a) MnP, (b) Mn_2P , and (c) MnP_4 surfaces to identify the active sites for the HER.

Fig. S16. Schematic HER mechanism on MnP, Mn_2P , and MnP_4 phases.

Fig. S17. Nyquist plots of AEM electrolysis cell catalyzed by Mn/Gr and MnP/Gr at a current density of 0.25 A cm⁻².

Fig. S18. H_2 production rate and Faradaic efficiency of AEM electrolysis cell catalyzed by MnP/Gr at a current density of 0.25 A cm⁻².

Table S1. Nominal and actual compositions determined by ICP-AES of as-prepared Mn_2P/Gr ,MnP/Gr, and MnP_4/Gr nanocomposites, respectively.

Compound	Element	Nominal composition (at.%)	Actual composition (at.%)
Mn ₂ P/Gr	Mn	66.6	65.8
	Р	33.3	34.2
MnP/Gr	Mn	50.0	49.3
	Р	50.0	50.7
MnP ₄ /Gr	Mn	20.0	19.8
	Р	80.0	80.2

Table S2. The fitted values of R_s and R_{ct} from Nyquist plots for Mn/Gr, Mn₂P/Gr, MnP/Gr, and MnP₄/Gr, respectively.

	Mn/Gr	Mn ₂ P/Gr	MnP/Gr	MnP ₄ /Gr
R _s (ohm)	4.49	4.56	4.47	4.43
R _{ct} (ohm)	279.53	15.94	4.75	39.21