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1 COMPUTATIONAL METHODS

1 Computational methods

1.1 Calculation and analysis of lattice thermal conductivity within the single-mode relaxation-time approximation

In this work, the lattice thermal conductivity from “particle-like” transport, κκκp, was computed by solving the phonon Boltzmann trans-
port equation (BTE) within the single-mode relaxation-time approximation (SM-RTA). In the SM-RTA, the κκκp is calculated as:1

κκκp =
1

NqV ∑
qqq j

κκκqqq j(T ) =
1

NV ∑
qqq j

Cqqq j(T )νννqqq j ⊗νννqqq jτqqq j (1)

where the sum runs over Nq wavevectors qqq and 3na band indices j, V is the unit-cell volume, and the κκκqqq j are the modal contributions to
the macroscopic κκκ determined by the heat capacities Cqqq j, group velocities νννλ and lifetimes τλ .

To analyse the SM-RTA κκκp, we first separate the κκκp into harmonic and weighted-average lifetime components according to:2–4

κκκp = τ
CRTA × 1

NqV ∑
qqq j

κκκqqq j

τqqq j
= τ

CRTA × 1
NV ∑

qqq j
Cqqq j(T )νννqqq j ⊗νννqqq j (2)

Differences in the κκκ/τCRTA reflect differences in the (harmonic) phonon group velocities, while differences in the τCRTA are indicative
of differences in the (anharmonic) phonon lifetimes.

The phonon lifetimes can be further analysed in terms of the “phase spaces” of allowed energy- and momentum-conserving scattering
pathways and the three-phonon interaction strengths according to:3,4

τ
−1 =

36π

h̄2 P̃N̄2( f ) (3)

N̄2( f ) is a phase-space function, computed from the harmonic phonon spectra, that counts the average number of energy- and monentum
conserving three-phonon scattering pathways for a phonon with frequency fqqq j. The P̃ are weighted-average anharmonic three-phonon
interaction strengths calculated from the harmonic frequencies and eigenvectors and the third-order force constants.1 Differences in the
N̄2( f ) allow for a qualitative assessment of the impact of the selection rules, determined by the shape of the phonon spectrum, on the
phonon lifetimes, while the P̃ allow for quantitative comparison of the three-phonon interaction strengths.4 We note that, unlike the
κκκ/τCRTA and τCRTA, the N̄2( f ) and P̃ are both “extensive” quantities, and must be divided and multiplied, respectively, by the number
of bands per wavevector, (3na)

2, to be compared between systems.

1.2 Calculation of electrical transport properties

The electrical properties were calculated by solving the electron Boltzmann transport equations within the momentum relaxation-time
approximation (MRTA) with approximate models for the electron scattering rates.5,6 In this approach, the electrical conductivity, See-
beck coefficient and electronic thermal conductivity are obtained from the nth-order moments of the generalised transport coefficients
LLLn(εF,T ):5

σσσ(εF,T ) = LLL0(εF,T ) (4)

SSS(εF,T ) =
1

eT
LLL1(εF,T )
LLL0(εF,T )

(5)

κκκel(εF,T ) =
1

e2T

{[
LLL1(εF,T )

]2

LLL0(εF,T )
−LLL2(εF,T )

}
(6)

where εF is the Fermi energy and e is the elementary charge. The LLLn are calculated as:

LLLn(εF,T ) = e2
∫

ΣΣΣ(ε,T )(ε − εF)
n
[
−∂ f (ε,εF,T )

∂ε

]
dε (7)

where the spectral conductivity ΣΣΣ and Fermi-Dirac function f are given by:

ΣΣΣ(ε,T ) =
1

8π3 ∑
j

∫
νννkkk j ⊗νννkkk jτkkk j(T )(ε − εkkk j)dkkk (8)

f (ε,εF,T ) =
1

exp [(ε − εF)/kBT ]+1
(9)

In Eq. 4-9 the εkkk j, νkkk j and τkkk j are the electron band energies, group velocities and lifetimes, respectively, εF is the Fermi energy, which
is determined by the density of states and an extrinsic carrier concentration (“doping level”) n, and kB is the Boltzmann constant.

The electron lifetimes are determined by combining the scattering rates (inverse lifetimes) from approximate models for four scat-
tering processes common to semiconductor materials, viz. acoustic deformation potential (ADP), ionized impurity (IMP), piezoelectric
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1 COMPUTATIONAL METHODS 1.3 Scalar averaging of tensor quantities

(PIE), and polar optical phonon (POP) scattering:6

τ
−1 = τ

−1
ADP + τ

−1
IMP + τ

−1
PIE + τ

−1
POP (10)

The expressions for the rates are somewhat involved, and full details can be found in Ref. 6.

1.3 Scalar averaging of tensor quantities

The four properties that determine the thermoelectric figure of merit ZT , viz. the electrical conductivity σσσ , Seebeck coefficient SSS and the
lattice and electronic thermal conductivity κκκ latt/κκκel, are 3×3 tensors. In cubic spacegroups, the three diagonal elements of the tensors
TTT , corresponding to transport along the Cartesian x, y and z directions, are equivalent and equal to the scalar average given by:

T =
1
3

Tr[TTT ] =
1
3
(
Txx +Tyy +Tzz

)
(11)

We denote the averages T (i.e. in Roman type) to distinguish them from the tensor quantities TTT (bold type). (For completeness, the
“particle-like” and “wave-like” intraband-tunnelling contributions to the κκκ latt, κκκp/κκκw are also tensors and can be averaged in the same
way. Except for Fig. 4(b) in the text, where we show the average κlatt and the minimum κyy along the b axis of Pnma SnS and SnSe, we
present and discuss the scalar averages in the text.

1.4 Approximate lattice thermal conductivity of π cubic models with expanded unit-cell volumes

The κκκ latt of π SnS and SnSe models with expanded unit-cell volumes was estimated using the approximate model developed in previous
studies.3,7

Approximate phonon linewidths Γ̃qqq j are calculated from:1

Γ̃qqq j =
36π

h̄2 Pqqq jN2(qqq,ωqqq j,T ) (12)

The function N2 captures the “phase space” of energy- and momentum-conserving scattering channels available to a phonon with
frequency ωqqq j and wavevector qqq and is given by:

N2(qqq,ω,T ) =
1

Nqqq
∑

qqq′ j′,qqq′′ j′′
]∆(qqq,qqq′,qqq′′)×{

[
nqqq′ j′(T )−nqqq′′ j′′(T )

][
δ (ω +ωqqq′ j′ −ωqqq′′ j′′)+δ (ω −ωqqq′ j′ +ωqqq′′ j′′)

]
+
[
nqqq′ j′(T )+nqqq′′ j′′(T )+1

]
δ (ω +ωqqq′ j′ +ωqqq′′ j′′)}

(13)

where functions δ and ∆ enforce conservation of energy and crystal momentum, respectively, and the nqqq j are the phonon occupation
numbers from the Bose-Einstein distribution:

nqqq j(T ) =
1

exp[h̄ωqqq j/kBT ]−1
(14)

By setting the averaged three-phonon interactions strengths Pqqq j in Eq. 12 to a weighted-average value P̃ determined at the equi-
librium volume V0, it is possible to estimate the κκκ latt of expanded unit cells under the assumption of similar three-phonon interaction
strengths to those at V =V0. In principle, the Pqqq j and P̃ are temperature independent, but in practice the P̃ are weakly T -dependent.2

In the present calculations, we use the P̃ determined at V =V0 and T = 300 K.

1.5 Calculation of Fermi surface complexity factor

The Fermi surface complexity factor N∗
VK∗ is given by:8

N∗
VK∗ =

(
m∗

S
m∗

σ

)3/2
(15)

where N∗
V is the effective valley degeneracy, K∗ is the effective anisotropy factor, and m∗

S and m∗
σ are the Seebeck and conductivity

effective masses.
Using the constant-relaxation time approximation (CRTA) for the electronic properties, where the electron lifetimes in Eq. 8 are set

to a constant value τkkk j = τel, the m∗
σ are given by:

σ = neµ =
ne2τel

m∗
σ

→ m∗
σ =

ne2τel

σ
(16)

We note that σ , n, µ and m∗
σ depend on the Fermi level εF, and also the temperature T since this may affect the position of the Fermi

level. However, the dependence of the m∗
σ on εF for a given carrier type is expected to be relatively weak.8
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1.6 Calculations on doped Pnma and π SnS and SnSe 1 COMPUTATIONAL METHODS

To determine the m∗
S, we follow the procedure in Ref. 8. We first determine the effective chemical potential ηeff that would yield

the Seebeck coefficient for a single parabolic band:

S(µ) =
k
±e

[
(2+λ )

(1+λ )

F1+λ (ηeff)

Fλ (ηeff)
−ηeff

]
(17)

where the sign of the charge is chosen based on the carrier type (+ve for holes, -v efor electrons), the scattering exponent λ = 1/2 for
the CRTA, and the f j(η) are given by:

Fj(η) =
∫

∞

0

ε j

1+ exp [ε −η ]
dε (18)

Once ηeff has been determined, we then calculate m∗
S according to:

n =
1

2π2

[
2m∗

SkBT

h̄2

]3/2
F1/2(ηeff)→ m∗

S =
h̄2

2kBT

[
2π2n

F1/2(ηeff)

]2/3

(19)

We again note that the n, ηeff and, hence, m∗
S depend on the Fermi level and temperature, but the m∗

S is expected to be relatively constant
with respect to the εF.

1.6 Calculations on doped Pnma and π SnS and SnSe
The doping energies Ed for incorporating Na, Ag, Cl, Br, Sb and Bi into the Pnma and π phases of SnS and SnSe were determined from
the forward energies of the following reactions:

SnSn +M → MSn +Sn (20)

ChCh +
1
2

SnX2 → XCh +
1
2

Sn+Ch (21)

where M is a metal substituting at an Sn site and X is a halogen substituting at a chalcogen (Ch) site. These processes were chosen
based on the fact that metal-doped tin chalcogenides are typically formed from the elemental solids,7,9–11 whereas halogen-doped
chalcogenies are usually formed from elemental Sn, S/Se and the tin dihalide SnX2.12–14

The degree of ionisation of the dopant was determined by analysing the electronic density of states g(E) (DoS). Noting that none of
the dopants we tested form defect levels, we first located the centre of the SnCh bandgap in the DoS from a plateau in the integrated
g(E) (IDoS) at the relative number of valence electrons corresponding to the undoped host. We then calculated the difference in the
IDoS between the centre of the gap and the calculated Fermi energy EF.

Precipitation energies Ep for exsolution of the pure metal chalcogenide phases from metal-doped SnCh in the presence of a chalcogen
reservoir were determined from the forward energies of the following reaction:

MSn +ChCh ± yCh → MCh1±y (22)

Exsolution of Na/Ag as M2S is accompanied by 0.5 equivalents of the chalcogen, whereas exsolution of Bi/Ag as M2S3 requires an
additional 0.5 equivalents of the chalcogen.

The doped structures were generated by substituting a single Sn or Ch atom in 1×3×3 supercells of the Pnma structures (72 atoms),
and single cells of the larger π structures (64 atoms), equivalent to 2.8 and 3.1 at.% respectively. These are in line with the heavier
doping levels targeted in experiments on the tin chalcogenides.7,13,15,16 Each model was optimised with the atomic positions allowed
to relax in a fixed unit-cell geometry. The Pnma supercell has a single unique Sn and Ch site, yielding a single configuration of each
dopant. The π unit cell has four inequivalent Sn and Ch sites, yielding four configurations of each dopant, and we therefore quote
parameters for these models as an average and range.

Finally, as a simple check on our values, we calculated formation energies Ef for the metal chalcogenides, including Pnma SnS
and SnSe, and compared them to the Ef predicted by the Materials Project17,18 and to experimental formation enthalpies where
available.19–25 The Ef are calculated as follows:

xM+ yCh → MxChy (23)

Initial structures of the reference elemental metals and metal chalcogenides/halides required for these calculations were obtained
from the Materials Project database,18 by selecting the closest experimentally-reported structures to the convex hull, and fully optimised.
The optimisations used a similar technical setup to the calculations on Pnma and π SnS and SnSe26, including a consistent 600 eV
plane-wave cutoff and the same Sn, S and Se projector augmented-wave (PAW) pseudopotentials.27,28 Appropriate kkk-point meshes
were determined by explicit convergence testing and are listed in Table S2, and PAW pseudopotentials were used with the following
valence configurations: Na - 2p63s1, Ag - 4s23d9, Cl - 3s23p5, Br - 4s24p5, Sb - 5s25p3, Bi - 6s24d106p3. The doped models of Pnma and
π SnS and SnSe were generated using our in-house Transformer code.29
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1 COMPUTATIONAL METHODS 1.6 Calculations on doped Pnma and π SnS and SnSe

Table S1 Electronic band gaps Eg and high frequency dielectric constants ε∞ of π SnS and SnSe calculated from self-consistent (“SCF”) and non
self-consistent HSE06 calculations (“NSCF”)30,31 using Γ-centered Monkhorst-Pack k-point meshes32 with up to 5×5×5 subdivisions. Note that the
Eg shown here are the minimum bandgaps, which correspond to indirect gaps very close to the direct gaps quoted in the text.

π SnS π SnSe
k-points Eg [eV] ε∞ Eg [eV] ε∞

SCF
2×2×2 1.71 - 1.37 -
3×3×3 1.67 - 1.34 -
4×4×4 1.63 - 1.30 -

NSCF

2×2×2 1.70 14.0 1.36 18.2
3×3×3 1.66 14.5 1.33 19.0
4×4×4 1.61 14.7 1.28 19.3
5×5×5 1.62 14.7 1.28 19.5

Table S2 List of reference compounds used in the doping energy calculations on π SnS and SnSe. For each compound, we list the Materials Project
(MP) database identifier (mp-ID)18 crystallographic spacegroup, number of formula units in the primitive (prim.) and conventional (conv.) unit cells,
kkk-point sampling mesh determined from convergence tests, and optimised lattice constants a, b and c, cell angles α, β and γ, and unit-cell volume
V . Data for Pnma SnS and SnSe was taken from our previous work.26 For structures where the primitive and conventional cells differ, the kkk-point
meshes are given in terms of the primitive cell and the lattice parameters are given in terms of the conventional cell. a The R3̄m spacegroup reported
in experiments, and the Pm3̄m spacegroup reported in the MP database and experiments, are recovered with loose symmetry tolerances of 0.1 and
1 Å respectively.33,34 b The initial MP and optimised structures have a higher-symmetry P21/c spacegroup than the P21 spacegroup reported for
mp-31053. The structure and spacegroup match another entry, mp-610517, which is also derived from an experimental structure and is predicted to
be only <30 meV higher in energy.

# F.U.
mp-ID Spacegroup Prim. Conv. kkk-points a [Å] b [Å] c [Å] α [◦] β [◦] γ [◦] V [Å3]

Sn mp-117 Fd3̄m 2 8 6×6×6 6.570 90 283.6
S mp-77 Fddd 32 128 2×2×2 10.768 13.135 24.898 90 3522
Se mp-570481 P21/c 64 1×1×2 15.318 14.785 9.446 90 93.47 2135
SnS (Pnma) 26 - Pnma 4 4×8×8 11.0 3.965 4.202 90 183.2
SnSe (Pnma) 26 - Pnma 4 4×8×8 11.35 4.124 4.335 90 202.9
Na mp-10172 P63/mmc 2 3×3×1 3.689 6.269 90 120 73.88
Ag mp-8566 P63/mmc 4 17×17×4 2.911 2.911 9.464 90 120 69.46
SnCl2 mp-29179 P4/mmm 8 1×4×1 9.630 4.325 15.984 90 665.7
SnBr2 mp-29862 P4/mmm 4 3×1×1 4.240 8.765 10.701 90 397.6
Sb mp-104 R3̄m 2 6 6×6×6 4.354 4.354 11.490 90 188.6
Bia mp-567597 P21/m 4 4×5×3 4.658 4.526 6.521 90 137.3
Na2S mp-648 Fm3̄m 1 4 4×4×4 6.498 90 274.4
Na2Se mp-1266 Fm3̄m 1 4 4×4×4 6.760 90 308.9
Ag2Sb mp-31053 P21/c 4 5×2×2 4.361 7.402 8.150 90 110.39 246.6
Ag2Se mp-568936 P212121 4 4×2×2 4.449 7.076 7.663 241.3
Sb2S3 mp-2809 Pnma 4 1×3×1 11.800 3.845 11.367 515.7
Sb2Se3 mp-2160 Pnma 4 1×3×1 12.362 4.002 11.714 579.4
Bi2S3 mp-22856 Pnma 4 2×6×2 11.594 3.998 11.161 517.3
Bi2Se3 mp-541837 R3̄m 1 2 5×5×5 4.191 4.191 29.929 90 120 455.3
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1.6 Calculations on doped Pnma and π SnS and SnSe 1 COMPUTATIONAL METHODS

Fig. S1 Contribution of “particle-like” and “wave-like” transport κp/κw to the total lattice thermal conductivity κlatt of (a) Pnma and (b) π SnS, and
(c) Pnma and (d) π SnSe. On each plot, the κp and corresponding κp +κw obtained from the single-mode relaxation-time approximation (“RTA”) and
full solution of the linearised Boltzmann transport equation (“LBTE”) are shown by hollow and filled markers, respectively. (Note that the κw is the
same for both κp calculations.)
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2 STRUCTURE, DYNAMICS AND LATTICE THERMAL CONDUCTIVITY

2 Structure, dynamics and lattice thermal conductivity

Table S3 Nearest-neighbour tin-chalcogen distances dSn−Ch in Pnma and π SnS and SnSe. The second column shows the number of symmetry-equivalent
sites in each chemical environment, and where applicable the numbers of equivalent distances are indicated in parentheses.

dSn−Ch [Å]
ns d1 d2 d3

SnS (Pnma) 4 2.632 2.661 (2) -

SnS (π)

4 2.651 (3) - -
12 2.613 2.634 2.677
4 2.654 (3) - -

12 2.617 2.638 2.710
SnSe (Pnma) 4 2.759 2.790 (2) -

SnSe (π)

4 2.786 (3) - -
12 2.741 2.766 2.823
4 2.786 - -

12 2.749 (3) 2.764 2.843

Fig. S2 Phonon dispersion and density of states (DoS) of π SnSe. The blue and orange shaded regions show the projections of the DoS onto the Sn
and Se atoms, respectively.

Fig. S3 Contribution of “particle-like” and “wave-like” transport κp/κw to the total lattice thermal conductivity κlatt of Pnma SnSe.
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2 STRUCTURE, DYNAMICS AND LATTICE THERMAL CONDUCTIVITY

Fig. S4 Contribution of “particle-like” and “wave-like” transport κp/κw to the total lattice thermal conductivity κlatt of π SnS.

Fig. S5 Contribution of “particle-like” and “wave-like” transport κp/κw to the total lattice thermal conductivity κlatt of Pnma SnS.

Fig. S6 Comparison of the “particle-like” lattice thermal conductivity κp and total conductivity κlatt = κp +κw of π SnS obtained with the PBEsol
functional35 and the PBEsol+D3 exchange-correlation treatment used in the present study.
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2 STRUCTURE, DYNAMICS AND LATTICE THERMAL CONDUCTIVITY

Fig. S7 Comparison of the phonon dispersion and density of states (DoS) of π SnS obtained with the PBEsol functional35 and the PBEsol+D3
exchange-correlation treatment used in the present study.

Fig. S8 Predicted thermal expansion of π SnS and SnSe as a function of temperature, relative to the optimised “athermal” equilibrium unit-cell volume
V0, obtained from the quasi-harmonic phonon calculations reported in Ref.26.
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2 STRUCTURE, DYNAMICS AND LATTICE THERMAL CONDUCTIVITY

Fig. S9 Comparison of the phonon dispersion and density of states (DoS) of π SnS calculated at the “athermal” equilibrium unit-cell volume V0 and
volumes corresponding to 3.46 and 6.56% expansions. Data for the calculations at the expanded volumes is taken from our previous work.26

Fig. S10 Comparison of the phonon dispersion and density of states (DoS) of π SnSe calculated at the “athermal” equilibrium unit-cell volume V0 and
volumes corresponding to 3.4 and 6.5% expansions. Data for the calculations at the expanded volumes is taken from our previous work.26
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2 STRUCTURE, DYNAMICS AND LATTICE THERMAL CONDUCTIVITY

Fig. S11 Predicted “particle-like”, “wave-like” and total lattice thermal conductivity, κp, κw and κp +κw of π SnS as a function of temperature. The
predicted κlatt obtained at the “athermal” equilibrium unit-cell volume V0 shown in the text is compared to calculations performed using a constant
averaged three-phonon interaction strength P̃= 8.363×10−13 eV2 and harmonic phonon spectra obtained at V =V0 and volume expansions corresponding
to 3.46 and 6.56% expansions (see Section 1.4).
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2 STRUCTURE, DYNAMICS AND LATTICE THERMAL CONDUCTIVITY

Fig. S12 Predicted “particle-like”, “wave-like” and total lattice thermal conductivity, κp, κw and κp + κw of π SnSe as a function of temperature.
The predicted κlatt obtained at the “athermal” equilibrium unit-cell volume V0 shown in the text is compared to calculations performed using a
constant averaged three-phonon interaction strength P̃ = 5.111×10−13 eV2 and harmonic phonon spectra obtained at V =V0 and volume expansions
corresponding to 3.46 and 6.56% expansions (see Section 1.4).
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3 ELECTRICAL TRANSPORT

3 Electrical transport

Table S4 Calculated scalar-average electrical conductivity σ and Seebeck coefficient S determined within the constant relaxation-time approximation
with τel = 10−14 s−1 for p- and n-type Pnma and π SnS/SnSe, together with the effective potential ηeff, conductivity and Seebeck effective masses
m∗

σ /m∗
S, and Fermi surface complexity factor N∗

VK∗ determined using the approach outlined in Ref. 8.

σ [S cm−1] S [µV K−1] ηeff m∗
σ [me] m∗

S [me] N∗
VK∗

SnS (Pnma) p-type 441 245 -0.01 0.26 0.7 4.56
n-type 625 -250 -0.09 0.18 0.73 8.20

SnS (π) p-type 67.2 397 -2.05 1.68 2.36 1.67
n-type 97.9 -405 -2.15 1.15 2.52 3.24

SnSe (Pnma) p-type 411 263 -0.28 0.27 0.81 5.11
n-type 750 -252 -0.12 0.15 0.75 11.05

SnSe (π) p-type 44.6 410 -2.22 2.53 2.63 1.06
n-type 99.7 -414 -2.26 1.13 2.71 3.70

Fig. S13 Electronic band structures and density of states (DoS) of π SnS (a) and π SnSe (b) obtained from non-self-consistent HSE06 calculations.30,31

On each band structure, the valence and conduction bands are shown in blue and orange lines, respectively, the valence-band maxima and conduction-
band minima (VBM/CBM) are marked by green and red circles, and the VBM is set to 0 eV.
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3 ELECTRICAL TRANSPORT

Fig. S14 Calculated (a)/(b) hole and (c)/(d) electron mobility µ as a function of extrinsic carrier concentration n (“doping level”) at T = 700 K
for (a)/(c) π SnS and (b)/(d) Pnma SnS. The overall mobility µtotal is shown in black together with the mobilities from the four carrier scattering
mechanisms modelled in the calculations, viz. acoustic deformation potential (µADP, orange), polar-optic phonon (µPOP, yellow), ionised impurity (µIMP,
green), and piezoelectric (µPIE, red). Note that piezoelectric scattering is not relevant to Pnma SnS due to the centrosymmetric crystal structure.
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3 ELECTRICAL TRANSPORT

Fig. S15 Calculated (a)/(b) hole and (c)/(d) electron mobility µ as a function of extrinsic carrier concentration n (“doping level”) at T = 700 K
for (a)/(c) π SnSe and (b)/(d) Pnma SnSe. The overall mobility µtotal is shown in black together with the mobilities from the four carrier scattering
mechanisms modelled in the calculations, viz. acoustic deformation potential (µADP, orange), polar-optic phonon (µPOP, yellow), ionised impurity (µIMP,
green), and piezoelectric (µPIE, red). Note that piezoelectric scattering is not relevant to Pnma SnSe due to the centrosymmetric crystal structure.
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3 ELECTRICAL TRANSPORT

Fig. S16 Calculated scattering rates as a function of energy for (a)/(c) π SnS and (b)/(d) Pnma SnS in the vicinity of the (a)/(b) valence and
(c)/(d) conduction band edges at a doping level of n = 4× 1019 cm−3 and temperature T = 700 K. Scattering rates for the four carrier scattering
mechanisms modelled in the calculations are shown, viz. acoustic deformation potential (ADP), polar-optic phonon (POP), ionised impurity (IMP),
and piezpelectric (PIE). Note that piezoelectric scattering is not relevant to Pnma SnS due to the centrosymmetric crystal structure, and that the
colours for the different rates are different in the plots for the π and Pnma phases.

Fig. S17 Calculated scattering rates as a function of energy for (a)/(c) π SnSe and (b)/(d) Pnma SnSe in the vicinity of the (a)/(b) valence and
(c)/(d) conduction band edges at a doping level of n = 4× 1019 cm−3 and temperature T = 700 K. Scattering rates for the four carrier scattering
mechanisms modelled in the calculations are shown, viz. acoustic deformation potential (ADP), polar-optic phonon (POP), ionised impurity (IMP),
and piezpelectric (PIE). Note that piezoelectric scattering is not relevant to Pnma SnSe due to the centrosymmetric crystal structure, and that the
colours for the different rates are different in the plots for the π and Pnma phases.
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3 ELECTRICAL TRANSPORT

Fig. S18 Calculated electrical properties of π SnS as a function of temperature with extrinsic carrier concentrations n between 1016-1020 cm−3: (a)/(b)
electrical conductivituy σ , (c)/(d) absolute Seebeck coefficient |S|, (e)/(f) power factor S2σ (PF), and (g)/(h) electronic thermal conductivity κel.
The colour scale for the lines runs between blue (n = 1016 cm−3) and cyan (n = 1020 cm−3). The left-hand column ((a), (c), (e), (g)) shows the
electrical properties with p-type doping, and the right-hand column ((b), (d), (f), (h)) shows the properties with n-type doping.
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3 ELECTRICAL TRANSPORT

Fig. S19 Calculated electrical properties of π SnSe as a function of temperature with extrinsic carrier concentrations n between 1016-1020 cm−3:
(a)/(b) electrical conductivituy σ , (c)/(d) absolute Seebeck coefficient |S|, (e)/(f) power factor S2σ (PF), and (g)/(h) electronic thermal conductivity
κel. The colour scale for the lines runs between blue (n = 1016 cm−3) and cyan (n = 1020 cm−3). The left-hand column ((a), (c), (e), (g)) shows the
electrical properties with p-type doping, and the right-hand column ((b), (d), (f), (h)) shows the properties with n-type doping.
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4 THERMOELECTRIC FIGURE OF MERIT

4 Thermoelectric figure of merit

Table S5 Calculated maximum thermoelectric figure of merit ZTmax of π and Pnma SnS and SnSe with corresponding temperature T , doping level n, and
associated electrical conductivity σ , Seebeck coefficient S, power factor S2σ (PF), and electronic, lattice and total thermal conductivity κel, κlatt and
κtot. Values are calculated at maximum temperatures of T = 880 and 800 K, close to the phase transition temperatures of the orthorhombic phases.36

For π SnS and SnSe, we provide ZTmax at n = 4×1019 and 1020 cm−3, which are the maximum n achieved in experiments on the p-type orthorhombic
phases9,15 and the maximum tested in our calculations, respectively. Data for Pnma SnS and SnSe are taken from our previous work,3,37,38 but the
κlatt has been recalculated to include the intraband tunnelling contribution κw.

n T ZT σ S PF S2σ κ [W m−1 K−1]
[cm−3] [K] [S cm−1] [µV K−1] [mW m−1 K−2] κel κlatt κtot

π-cubic SnS

p-type 4×1019 880 0.85 24 425 0.44 0.03 0.43 0.46
p-type 1020 880 1.27 60 347 0.72 0.07 0.43 0.50
n-type 4×1019 880 1.64 48 -444 0.95 0.08 0.43 0.51
n-type 1020 880 2.24 117 -367 1.58 0.19 0.43 0.62

π-cubic SnSe

p-type 4×1019 800 0.83 20 436 0.39 0.02 0.35 0.37
p-type 1020 800 1.25 50 358 0.64 0.06 0.35 0.41
n-type 4×1019 800 2.39 68 -443 1.34 0.10 0.35 0.45
n-type 1020 800 3.01 169 -365 2.26 0.25 0.35 0.60

SnS (Pnma)
3,37,38 p-type 4×1019 880 1.26 305 255 1.98 0.46 0.92 1.38

n-type 4×1019 880 1.60 386 -262 2.65 0.54 0.92 1.46

SnSe (Pnma)
3,37,38 p-type 4×1019 800 2.03 448 262 3.07 0.49 0.72 1.21

n-type 2×1019 800 2.38 400 -299 3.58 0.48 0.72 1.20

Table S6 Calculated doping energies Ed, extrinsic carrier concentrations (“doping levels”) n, and, where relevant, precipitation energies Ep for π SnS
and SnSe doped with Na, Ag, Cl, Br, Bi and Sb. The Ed and Ep are defined in Eqs 20/21 and 22 in Section 1.6. The unit cell of the π phases
have four crystallographically-independent Sn and chalcogen sites, so values for π SnS and SnSe are presented as an average, taking into account site
degeneracy, and a range.

Dopant Parent Phase Ed [eV] n [cm−3] Ep [eV]

Na

Pnma SnS -0.61 1 0.07
π SnS -0.45 (-0.52 to -0.37) 1 (0.99-1.03) -0.12 (-0.2 to 0.04)
Pnma SnSe -0.55 1 0.03
π SnSe -0.50 (-0.57 to -0.43) 0.01 (0.97-1.04) -0.07 (-0.13-0)

Ag

Pnma SnS 1.32 1 -0.27
π SnS 1.53 (1.48-1.59) 0.99 (0.97-1) -0.51 (-0.57 to -0.45)
Pnma SnSe 1.29 1 -0.36
π SnSe 1.36 (1.3-1.43) 1.01 (1-1.03) -0.47 (-0.55 to -0.42)

Cl

Pnma SnS 1.67 -1 -
π SnS 1.72 (1.64-1.91) -1 (-1.01 to -0.99) -
Pnma SnSe 1.47 -1 -
π SnSe 1.54 (1.48-1.71) -1 (-1.01 to -1) -

Br

Pnma SnS 1.65 -1 -
π SnS 1.72 (1.64-1.93) -1.01 (-1.02 to -1) -
Pnma SnSe 1.37 -1 -
π SnSe 1.56 (1.4-1.62) -1.01 (-1.02 to -1) -

Sb

Pnma SnS 1.07 -1 -0.68
π SnS 1.14 (1.09-1.2) -1 -0.78 (-0.85 to -0.73)
Pnma SnSe 0.82 -1 -0.49
π SnSe 0.93 (0.89-0.96) -1.01 (-1 to -1.03) -0.64 (-0.67 to -0.59)

Bi

Pnma SnS 0.86 -1 -0.77
π SnS 0.94 (0.91-1) -0.99 (-0.96 to -1) -0.88 (-0.85 to -0.93)
Pnma SnSe 0.59 -1 -0.56
π SnSe 0.7 (0.67-0.72) -1 (-1 to -1.02) -0.72 (-0.69 to -0.74)
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Table S7 Calculated formation energies Ef for Pnma SnS and SnSe and the metal chalcogenide compounds used to determine the precipitation energies
Ep in Table S6. The Ef are defined in Eq. 23 in section 1.6. For each compound, we list the Materials Project database identifier (mp-ID) and the
Ef reported in the MP database17,18 and from experimental formation enthalpies where available.19–25 (Note that we were not able to find measured
formation enthalpies for Na2Se and Sb2Se3.)

Ef [eV per F.U.]
mp-ID This work Materials Project Expt

Pnma SnS mp-2231 -1.1 -0.94 -1.01/-1.09 19

Pnma SnSe mp-691 -1.09 -0.91 -0.93 20

Na2S mp-648 -3.27 -3.81 -3.82 21

Na2Se mp-1266 -3.23 -3.81
Ag2S mp-31053 -0.09 -0.67 -0.32 22

Ag2Se mp-568936 -0.33 -0.65 -0.41 23

Sb2S3 mp-2809 -1.43 -1.44 -1.47 24

Sb2Se3 mp-2160 -1.51 -1.42
Bi2S3 mp-22856 -2.01 -3.32 -1.4 22

Bi2Se3 mp-541837 -2.14 -3.45 -1.5 25

Fig. S20 Predicted thermoelectric figure of merit ZT of p-type π SnS (a) and SnSe (b) as a function of extrinsic electron carrier concentration n
(“doping level”) and temperature T . Values of ZT = 0.25, 0.5, and 1 are shown by contour lines.
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Fig. S21 Calculated electronic density of states (DoS) of Pnma SnS doped with Na (a), Ag (b), Cl (c), Br (d), Sb (e) and Bi (f). On each plot,
the approximate midpoint of the host bandgap, used to estimate the ionisation of the dopant atom, is shown as a vertical dashed line. These
calculations were performed with the PBEsol functional and the bandgaps are underestimated compared to the more accurate non-self-consistent
HSE06 calculations discussed in the text.
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Fig. S22 Calculated electronic density of states (DoS) of π SnS doped with Na (a), Ag (b), Cl (c), Br (d), Sb (e) and Bi (f). On each plot,
the approximate midpoints of the host bandgaps, used to estimate the ionisation of the dopant atom, are shown as vertical dashed lines. These
calculations were performed with the PBEsol functional and the bandgaps are underestimated compared to the more accurate non-self-consistent
HSE06 calculations discussed in the text.
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Fig. S23 Calculated electronic density of states (DoS) of Pnma SnSe doped with Na (a), Ag (b), Cl (c), Br (d), Sb (e) and Bi (f). On each
plot, the approximate midpoint of the host bandgap, used to estimate the ionisation of the dopant atom, is shown as a vertical dashed line. These
calculations were performed with the PBEsol functional and the bandgaps are underestimated compared to the more accurate non-self-consistent
HSE06 calculations discussed in the text.
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Fig. S24 Calculated electronic density of states (DoS) of π SnSe doped with Na (a), Ag (b), Cl (c), Br (d), Sb (e) and Bi (f). On each plot,
the approximate midpoints of the host bandgaps, used to estimate the ionisation of the dopant atom, are shown as vertical dashed lines. These
calculations were performed with the PBEsol functional and the bandgaps are underestimated compared to the more accurate non-self-consistent
HSE06 calculations discussed in the text.
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