Supplementary Information

Ligand Environment Engineering of Nickel Single Atomic Sites for Efficient Electrochemical Carbon Dioxide Reduction Reaction

Min Sung Kim, ‡^{*ab*} *Adyasa Priyadarsini*, ‡^{*c*} *Ju-Hyeon Lee*, ^{*ab*} *Jin-Gyu Bae*, ^{*ab*} *Jeong Yeon Heo*, ^{*ab*} *Hyeon Jeong Lee*, ^{**d*} *Shyam Kattel*, ^{**e*} *and Ji Hoon Lee*, ^{**ab*}

^a School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

^b KNU Advanced Material Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea

^c Department of Physics, Florida A&M University, Tallahassee, FL 32307, United States

^d Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

^e Department of Physics, University of Central Florida, Orlando, FL 32816, United States

[‡] These authors contributed equally to this work.

*Corresponding authors:

H. J. Lee (hyeonjeong.lee@unist.ac.kr)

S. Kattel (<u>shyam.kattel@ucf.edu</u>)

J. H. Lee (jihoonlee@knu.ac.kr)

Supplementary Figure Caption:

- Fig. S1. The N₂ adsorption/desorption isotherms at 77K for Ni-SACs.
- Fig. S2. Pore size distribution curves based on NLDFT method.
- Fig. S3. The ESCA calculations for a series of Ni-SACs.
- Fig. S4. High resolution TEM analyses of Ni-SACs.
- Fig. S5. Raman spectra for a series of Ni-SACs.
- Fig. S6. XANES characterization for a series of Ni-SACs.
- Fig. S7. The integrated area of the peak A for the series of Ni-SACs.
- Fig. S8. The integrated area of the peak B for the series of Ni-SACs.
- Fig. S9. Integrated area values of a series of catalysts for (a) peak A and (b) peak B.
- Fig. S10. EXAFS fitting profiles for Ni-SACs and Ni-Pc.
- Fig. S11. High resolution N 1s spectra of the samples and correlation of the carbon with N contents.
- Fig. S12. Faradaic efficiencies for CO and H₂ of the series of Ni-SACs at different potentials.
- Fig. S13. Partial current densities for CO and H₂ of the series of Ni-SACs.
- Fig. S14. Normalized partial current densities for CO and H₂ of the series of Ni-SACs.
- Fig. S15. Electrochemical performance of Ni-SAC-700/H₂.
- Fig. S16. Electrochemical performance of Ni-SAC-800/Ar.
- Fig. S17. Electrochemical performance of Ni-SAC-800/H₂.
- Fig. S18. Electrochemical performance of Ni-SAC-900/Ar.
- Fig. S19. Electrochemical performance of Ni-SAC-900/H₂.
- Fig. S20. Tafel plots for Ni-SACs.
- Fig. S21. Correlation between J_{CO} and N coordination for a series of Ni-SACs.
- Fig. S22. EIS analyses for series of Ni-SACs.
- Fig. S23. Stability tests of Ni-SACs performed at $-0.6 V_{RHE}$.
- Fig. S24. Photographs of step-by-step cell assembly for our flow cell reactor.

Fig. S25. CO₂RR performance comparison of Ni-SAC-900/Ar and Ni-SAC-700/H₂.

Fig. S26. In-situ XANES results at Ni K-edge.

Fig. S27. Integrated area values for peak B of Ni-SACs at -0.6 V_{RHE}.

Fig. S28. Correlation between J_{CO} and $\Delta Peak B$ for a series of Ni-SACs.

Fig. S29. The binding energy of Ni atom on different Ni-SAC.

Fig. S30. Optimized structures Ni-SACs with single vacancy (SV1 and SV2).

Fig. S31. Optimized structures Ni-SACs with double (DV) and triple vacancy (TV).

Fig. S32. The adsorbed *COOH and *CO configurations on the eight Ni-SACs.

Fig. S33. The relationship between (a) $G_{ads}(COOH)$ and ΔG_{PDS} and (b) $G_{ads}(CO)$ and ΔG_{PDS} .

Fig. S34. The adsorbed *H configuration on the eight Ni-SACs.

Fig. S35. Density of states along with the d-band center of the 3 different rearrangements of NiN₂C₂_DV.

Fig. S36. The potential (U_{RHE}) dependent ΔG_U .

Suppulementary Table Caption:

Table S1. Elemental analysis results and electrode specifications of Ni-SAC catalysts.

Table S2. Structural model for EXAFS fitting in this study.

Table S3. The EXAFS fitting parameters and results for Ni-Pc.

Table S4. The EXAFS fitting parameters and results for Ni-SAC-700/H₂.

Table S5. The EXAFS fitting parameters and results for Ni-SAC-800/Ar.

Table S6. The EXAFS fitting parameters and results for Ni-SAC-800/H₂.

Table S7. The EXAFS fitting parameters and results for Ni-SAC-900/Ar.

Table S8. The EXAFS fitting parameters and results for Ni-SAC-900/H₂.

Table S9. Bond length of Ni–N and Ni–C for the energetically optimized Ni-N_xC_y configurations.

Table S10. Bader charge analysis of Ni-SACs with different vacancy and N decoration.

Table S11. The limiting potential values calculated from the PDS of CO₂RR and HER processes.

Table S12. Bond length of Ni–N and Ni–C before and after intermediates adsorption.

Table S13. The d-band center (ε_d) and free energy change of *COOH and *H formation.

Fig. S1. N₂ adsorption/desorption isotherms at 77 K for (a) Ni-SAC-700/H₂, (b) Ni-SAC-800/Ar, (c) Ni-SAC-800/H₂, (d) Ni-SAC-900/Ar, and (e) Ni-SAC-900H₂.

Fig. S2. Pore size distribution curves based on NLDFT method assuming slit-shaped pore geometry for (a) Ni-SAC-700/H₂, (b) Ni-SAC-800/Ar, (c) Ni-SAC-800/H₂, (d) Ni-SAC-900/Ar, and (e) Ni-SAC-900H₂.

Fig. S3. The ESCA calculations for a series of Ni-SACs. (a-e) CV curves in 0.5M KHCO₃ electrolyte at different scan rates. (f) Calculated EDLC values from the slope in a plot of J versus scan rate. Assuming the double layer capacitance per cm² of the electrochemical surface area of the catalyst is identical to that of graphene, namely, 21 μ F cm⁻².

Fig. S4. High resolution TEM analyses of Ni-SACs. (a) Ni-SAC-700/H₂. (b) Ni-SAC-800/Ar. (c) Ni-SAC-800/H₂. (d) Ni-SAC-900/Ar. (e) Ni-SAC-900/H₂.

Fig. S5. Raman spectra for a series of Ni-SACs.

Fig. S6. XANES characterization for a series of Ni-SACs.

Fig. S7. The integrated area of the peak A for the series of Ni-SACs.

Fig. S8. The integrated area of the peak B for the series of Ni-SACs.

Fig. S9. Integrated area values of a series of catalysts for (a) peak A and (b) peak B in Fig. S6-S8.

Fig. S10. EXAFS fitting profiles for (a) Ni-SAC-700/H₂, (b) Ni-SAC-800/Ar, (c) Ni-SAC-800/H₂,

(d) Ni-SAC-900/Ar, (e) Ni-SAC-900/ H_2 , and (f) Ni-Pc.

Fig. S11. (a-e) High resolution N 1s spectra of the samples. (f) The correlation of the carbon content with N-6 and N-Q contents.

Fig. S12. Faradaic efficiencies for CO and H₂ of the series of Ni-SACs at different potentials.

Fig. S13. Partial current densities (mA cm_{geo}^{-2}) for CO and H₂ of the series of Ni-SACs at different

potentials.

Fig. S14. Normalized partial current densities (mA $\mu g_{Ni}^{-1} cm_{geo}^{-2}$) for CO and H₂ of the series of Ni-SACs at different potentials.

Fig. S15. Electrochemical performance of Ni-SAC-700/H₂. (a-g) CA curves at different potentials alongside the individual data points of FE_{CO} and FE_{H2} . (h) The calculated FE and J values at different potentials.

Fig. S16. Faradaic efficiency and current density at different potentials of Ni-SAC-800/Ar.

Fig. S17. Faradaic efficiency and current density at different potentials of Ni-SAC-800/H₂.

Fig. S18. Faradaic efficiency and current density at different potentials of Ni-SAC-900/Ar.

Fig. S19. Faradaic efficiency and current density at different potentials of Ni-SAC-900/H₂.

Fig. S20. (a) Tafel plots derived from linear sweep voltammetry (LSV) curves for Ni-SACs. (b) Tafel plots based on J_{CO} and J_{H2} values for Ni-SACs.

Fig. S21. Correlation between J_{CO} (mA cm_{geo}⁻² at -0.6 V_{RHE}) and N coordination (x) for a series of Ni-SACs.

Fig. S22. (a) EIS analyses for series of Ni-SACs. Inset is a magnified EIS profile to visualize the semicircle region. EIS fitting results for (b) Ni-SAC-700/H₂, (c) Ni-SAC-800/Ar, (d) Ni-SAC-800/H₂, (e) Ni-SAC-900/Ar, and (f) Ni-SAC-900/H₂. Inset is the electrochemical equivalent circuit model for the fitting.

Fig. S23. Stability tests of (a) Ni-SAC-700/H₂, (b) Ni-SAC-800/Ar, (c) Ni-SAC-800/H₂, and (d) Ni-SAC-900/H₂ performed at $-0.6 V_{RHE}$.

Fig. S24. (a) Photographs of spray coating for electrodes and (b) vacuum-dried WE and CE. (c-d) Photographs of step-by-step cell assembly for our flow cell reactor.

Fig. S25. CO_2RR performance comparison of Ni-SAC-900/Ar and Ni-SAC-700/H₂. (a-b) Satability tests at (a-b) flow cell and (c-d) H-cell setups.

Fig. S26. *In-situ* XANES results of (a) Ni-SAC-800/Ar, (b) Ni-SAC-800/H₂, and (c) Ni-SAC-900/H₂ at Ni K-edge.

Fig. S27. Integrated area values for peak B of (a) Ni-SAC-700/H₂, (b) Ni-SAC-800/Ar, (c) Ni-SAC-800/H₂, (d) Ni-SAC-900/Ar, and (e) Ni-SAC-900/H₂ at $-0.6 V_{RHE}$.

Fig. S28. Correlation between J_{CO} (mA $cm_{geo}{}^{-2}$ at –0.6 $V_{RHE})$ and $\Delta Peak$ B (%) for a series of Ni-

SACs.

Fig. S29. The binding energy of Ni atom on different Ni-SAC. The black, red, blue, and green bars represent (a) NiNxCy-SV1, (b) NiNxCy-SV2, (c) NiNxCy-DV, and (d) NiNxCy-TV respectively.

Fig. S30. Optimized structures Ni-SACs. For NiN_xC_y , x and y represent the number of N atoms and C atoms connected with the Ni atom. For SV1 and SV2, the Ni is coordinated to 3 sites on the graphene surface. The Ni-bonded C coordination number is 3-x. $NiN_xC_y_i$ (i=1, 2, and 3) represent a specific N decoration on the graphene surface with the same x and y. Certain Ni-SACs have a single configuration, *i.e.*, one type of nitrogen decoration.

Fig. S31. Optimized structures Ni-SACs with double (DV) and triple vacancy (TV). For NiN_xC_y, x and y represent the number of N atoms and C atoms bonded to the Ni atom. For DV and TV, the Ni is coordinated to 4 sites and 3 sites on the graphene surface, respectively, hence the Ni-bonded C coordination number is 4-x and 3-x. NiN_xC_y_i (i=1, 2, and 3) represent a specific N decoration on the graphene surface with the same x and y. Certain configurations have a single configuration *i.e.*, one type of nitrogen decoration.

Fig. S32. The adsorbed *COOH and *CO configurations on the eight Ni-SACs with negative formation energy values in **Fig. 5**.

Fig. S33. The relationship between (a) $G_{ads}(COOH)$ and ΔG_{PDS} and (b) $G_{ads}(CO)$ and ΔG_{PDS} . A slope and intercept values along with the correlation coefficient of the linear relationship are provided in the inset.

Fig. S34. The adsorbed *H configuration on the eight Ni-SACs.

Fig. S35. (a, c, e) The projected density of states (PDOS) along with the d-band center of the 3 different rearrangements of NiN_2C_2 _DV. (b, d, f) The charge density distribution around Ni single atom and N dopant, where blue and yellow regions represent charge depletion and accumulation.

Fig. S36. The potential (U_{RHE}) dependent ΔG_U calculated for all *COOH formation (black line), *CO desorption (red line), and *H formation (green line) catalyzed by Ni-SACs. The experimental reductive potential range is marked on the top. The vertical dotted line (orange) represents the reductive potential beyond which CO poising is possible.

				Mass lo	ading ^[a]
	ICP-OES	EA	XPS	(mg ci	m _{geo} ⁻²)
	(ppm)	(wt%)	(at%)	Ni-SAC	NESAC
				+Nafion	MI-SAC
		C: 68.2121	C: 80.16		
Ni-SAC	NE: 20201.07	N: 17.8897	N: 15.83	1 152(5)	0.401
-700/H ₂	INI. 29301.07	O: 4.4402	O: 3.43	1.132(3)	0.401
		H: 1.3801	Ni: 0.58		
		C: 62.9856	C: 78.42		
Ni-SAC	NE: 28210 70	N: 20.2528	N: 18.30	1 152(7)	0.401
-800/Ar	INI. 20219.79	O: 4.4519	O: 2.68	1.135(7)	0.401
		H: 0.7755	Ni: 0.60		
		C: 74.3278	C: 86.29		0.401
Ni-SAC	NE. 20212 72	N: 12.0277	N: 10.19	1 152(4)	
-800/H ₂	INI. 50512.75	O: 3.4733	O: 2.69	1.132(4)	
		H: 0.8268	Ni: 0.83		
		C: 73.0521	C: 85.37		
Ni-SAC	NE. 27091 96	N: 12.7101	N: 11.58	1 151(2)	0.400
-900/Ar	INI: 37081.80	O: 2.9833	O: 2.35	1.131(3)	0.400
		H: 0.4563	Ni: 0.70		
		C: 78.1440	C: 90.1		
Ni-SAC	NE: 54120.00	N: 8.0926	N: 6.86	1 152(7)	0.401
-900/H ₂	INI: 34120.09	O: 1.8383	O: 2.38	1.132(7)	0.401
-		H: 0.4964	Ni: 0.66		

Table S1. Elemental analysis results and electrode specifications of Ni-SAC catalysts.

[a] The areal loading of catalysts was determined by using at least 5 electrodes.

	Chemical formula	Ni
	Space group	Fm ³ m
Ni	Lattice constant	a = b = c = 3.47515 Å $\alpha, \beta, \gamma = 90^{\circ}$
	Atomic position	Ni (0, 0, 0)
	Chemical formula	$C_{32}H_{16}NiN_8$
	Space group	P2 ₁ /c
	Lattice constant	a = 14.489 Å, b = 4.763 Å, c = 19.156 Å $\alpha = 90^{\circ}, \beta = 120.76^{\circ}, \gamma = 90^{\circ}$
Ni-Pc	Atomic position	Ni $(0, 0, 0)$, N1 $(0.2531, 0.0282, 0.1612)$, N2 $(0.0732, 0.2194, 0.0973)$, N3 $(-0.0713, 0.5227, 0.0786)$, N4 $(-0.1313, 0.1968, -0.0331)$, C1 $(0.1791, 0.1968, 0.1581)$, C2 $(0.2018, 0.3964, 0.2227)$, C3 $(0.2937, 0.4526, 0.2971)$, C4 $(0.2858, 0.659, 0.3453)$, C5 $(0.1902, 0.8051, 0.3203)$, C6 $(0.0982, 0.7494, 0.2454)$, C7 $(0.1064, 0.5414, 0.1976)$, C8 $(0.0282, 0.4293, 0.1192)$, C9 $(-0.1443, 0.4095, 0.0093)$, C10 $(-0.2553, 0.5013, -0.0325)$, C11 $(-0.3077, 0.7034, -0.0132)$, C12 $(-0.4176, 0.7355, -0.0665)$ C13 $(-0.4721, 0.5718, -0.1369)$, C14 $(-0.4188, 0.3696, -0.1561)$, C15 $(-0.3092, 0.339, -0.1025)$, C16 $(-0.2297, 0.1511, -0.1022)$, H1 $(0.3679, 0.339, 0.3168)$, H2 $(0.3557, 0.7092, 0.4047)$, H3 $(0.187, 0.9618, 0.359)$, H4 $(0.0238, 0.8584, 0.2254)$, H5 $(-0.2644, 0.8298, 0.0412)$, H6 $(-0.4615, 0.8879, -0.0542)$, H7 $(-0.5584, 0.6018, -0.178)$, H8 $(-0.4616, 0.2439, -0.2109)$

Table S2. Structural model for EXAFS fitting in this study.

Ni-Pc	Path	Model C.N. ^[a]	R _{model} (Å)	R _{fit} (Å)	ΔE (eV)	σ ² (×10 ⁻³ , Å ²)			
Ni K-edge	Ni-N1	4	1.9151	1.88±0.01	1.684 ^[b]	3±2			
	Structure model								
	Lattice co	nstant		a = 14.5, b	= 4.8 Å, c $= 1$	9.2 Å			
	Atomic p	osition	1	Ni (0, 0, 0), Ni	(0.869, 0.19	7, 0.967),			
	Fitting results								
Indep	endent points	5		4.2324219					
Numbe	er of variable	s		3					
Cl	hi-square			27847.4786908					
Reduc	ed chi-squar	e		22595.7354829					
I	R-factor			0.0200521					
Numb	er of data set	s		1					
				Ni K-edge					
]	k-range			2.6 - 12.5					
j	R-range		1.1 – 1.8						

Table S3. The EXAFS fitting parameters and results for Ni-Pc.

[a] Amplitude reduction factor that made the coordination number of 4 for the Ni–N1 path in this

data was further used for calculating the coordination of Ni species in the samples.

[b] This variable was fixed as the optimal value in the last fitting process step because of the uncertainty.

	Path	Model C.N.	Fitted C.N.	R _{model} (Å)	R _{fit} (Å)	ΔE (eV)	σ ² (×10 ⁻³ , Å ²)	
Ni	Ni-N1	4	3.5±0.2	1.9151	1.87±0.01	-1±2	8.95 ^[a]	
K-edge	Ni-C1	8	1.2±0.7	2.9455	2.68±0.04	-9.374 ^[a]	6.05 ^[a]	
		-	F	Fitting results				
Independent points					7.92187	750		
Number of variables			5					
C	hi-squar	e	1900.1684561					
Reduc	ed chi-so	luare	650.3250331					
]	R-factor		0.0088145					
Numb	er of dat	a sets			1			
				Ni K-edge				
k-range			3.0 - 11.5					
<i>R</i> -range			1.0 - 2.5					

Table S4. The EXAFS fitting parameters and results for Ni-SAC-700/H₂.

[a] This variable was fixed as the optimal value in the last fitting process step because of the uncertainty.

	Path	Model C.N.	Fitted C.N.	R _{model} (Å)	R _{fit} (Å)	ΔE (eV)	σ ² (×10 ⁻³ , Å ²)	
Ni K-edge	Ni-N1	4	3.5±0.1	1.9151	1.868± 0.009	-3±1	10 ^[a]	
	Fitting results							
Independent points				6.3085938				
Numb	er of var	iables	3					
C	hi-squar	e	1125.0009762					
Reduc	ed chi-so	luare	340.0239078					
]	R-factor		0.0055604					
Numb	er of dat	a sets	1					
				Ni K-edge				
k-range			2.8 - 11.36					
<i>R</i> -range			1.0 – 2.2					

 Table S5. The EXAFS fitting parameters and results for Ni-SAC-800/Ar.

[a] This variable was fixed as the optimal value in the last fitting process step because of the

uncertainty.

	Path	Model C.N.	Fitted C.N.	R _{model} (Å)	R _{fit} (Å)	ΔE (eV)	σ ² (×10 ⁻³ , Å ²)		
Ni K-edge	Ni-N1	4	3.2±0.2	1.9151	1.87±0.02	-2±2	9.97 ^[a]		
			F	itting resu	ılts				
Independent points				5.3750000					
Numb	er of var	iables	3						
С	hi-squar	e	3180.5579633						
Reduc	ed chi-so	quare	1339.1823003						
]	R-factor		0.0134865						
Numb	er of dat	a sets	1						
				Ni K-edge					
	k-range			2.86 - 11.5					
<i>R</i> -range			1.0 - 2.0						

Table S6. The EXAFS fitting parameters and results for Ni-SAC-800/H₂.

[a] This variable was fixed as the optimal value in the last fitting process step because of the

uncertainty.

	Path	Model C.N.	Fitted C.N.	R _{model} (Å)	R _{fit} (Å)	ΔE (eV)	σ ² (×10 ⁻³ , Å ²)	
Ni K-edge	Ni-N1	4	2.9±0.3	1.9151	1.872± 0.010	-2±1	10±2	
	Fitting results							
Independent points				6.0156250				
Numb	er of var	iables	4					
С	hi-squar	e	503.5793262					
Reduc	ed chi-so	quare	249.8378052					
]	R-factor		0.0054667					
Numb	er of dat	a sets	1					
			Ni K-edge					
k-range			2.86 - 11.7					
<i>R</i> -range			1.0 – 2.1					

 Table S7. The EXAFS fitting parameters and results for Ni-SAC-900/Ar.

	Path	Model C.N.	Fitted C.N.	R _{model} (Å)	R _{fit} (Å)	ΔE (eV)	σ ² (×10 ⁻³ , Å ²)	
Ni	Ni-N1	4	1.20± 0.07	1.9151	1.86±0.01	-2±2	8.41 ^[a]	
K-edge	Ni-Ni	12	4.38± 0.05	2.4573	2.487 ± 0.002	1.9±0.3	7.17 ^[a]	
	Fitting results							
Indep	endent p	oints		9.9892578				
Number of variables					6			
C	hi-squar	e	257.4916939					
Reduc	ed chi-so	luare	64.5462655					
]	R-factor		0.0004427					
Numb	Number of data sets 1							
			Ni K-edge					
k-range			2.68 - 12.35					
<i>R</i> -range			1.0 - 2.65					

Table S8. The EXAFS fitting parameters and results for Ni-SAC-900/H₂.

[a] This variable was fixed as the optimal value in the last fitting process step because of the uncertainty.

		DFT-calculated bond length (Å)
	Ni-N1	1.87
NiN ₂ C ₁ _SV1	Ni-N2	1.87
	Ni-C1	1.82
	Ni-N1	1.89
NiN ₃ C ₀ _SV1	Ni-N2	1.88
	Ni-N3	1.88
	Ni-N1	1.93
	Ni-C1	1.88
$\operatorname{NIIN}_1 \operatorname{C}_3 \operatorname{DV}$	Ni-C2	1.86
	Ni-C3	1.86
	Ni-N1	1.94
NIN C 1 DV	Ni-N2	1.95
$\operatorname{ININ}_2 \operatorname{C}_2 \operatorname{-1}_D \operatorname{V}$	Ni-C1	1.83
	Ni-C2	1.83
	Ni-N1	1.94
	Ni-N2	1.94
	Ni-C1	1.83
	Ni-C2	1.83
	Ni-N1	1.89
NIN C 2 DV	Ni-N2	1.89
	Ni-C1	1.87
	Ni-C2	1.87
	Ni-N1	1.91
	Ni-N2	1.92
	Ni-N3	1.87
	Ni-C1	1.85
	Ni-N1	1.88
	Ni-N2	1.88
	Ni-N3	1.88
	Ni-N4	1.88

Table S9. Bond length of Ni–N and Ni–C for the energetically optimized Ni- N_xC_y configurations.

Table	S10 .	Bader	charge	analysis	of Ni	-SACs	with	different	vacancy	and N	decoration.	The
charge	e deple	etion or	n the Ni	atoms is	presei	nted as	Ni(+o]).				

Vacancy types	Entry	Ni(+q)
SV1	NiN ₂ C ₁	0.71
51	NiN ₃ C ₀	0.8
	NiN ₁ C ₄	0.68
	NiN ₂ C ₂ -1	0.69
SV2	NiN ₂ C ₂ -2	0.66
5v2	NiN ₂ C ₃ -3	0.71
	NiN ₃ C ₁	0.74
	NiN ₄ C ₀	0.80

	U _{PDS} [CO ₂ RR]	U _{PDS} [HER]	U _{PDS} [CO ₂ RR] – U _{PDS} [HER]
NiN ₂ C ₁ _SV1	-0.65	-0.54	-0.11
NiN ₃ C ₀ _SV1	-0.96	-0.24	-0.72
NiN ₁ C ₃ DV	-0.78	-0.31	-0.47
NiN ₂ C ₂ -1_DV	-1.13	-1.06	-0.06
NiN ₂ C ₂ -2_DV	-1.18	-0.69	-0.49
NiN ₂ C ₂ -3_DV	-1.05	-1.24	0.19
NiN ₃ C ₁ _DV	-1.16	-0.49	-0.67
NiN ₄ C ₀ _DV	-1.81	-2.07	0.26

Table S11. The limiting potential (U_{PDS} , in V) values calculated from the PDS of CO₂RR and HER processes and the difference (ΔU_{PDS}) between the U_{PDS} values for both processes.

		Before	After adsorption			
		adsorption	*СООН	*CO	*H	
NiN ₂ C ₂ -1_DV	Ni-N1	1.94 Å	1.95 Å	1.99 Å	1.92 Å	
	Ni-N2	1.95 Å	1.96 Å	1.99 Å	1.91 Å	
	Ni-C1	1.83 Å	1.85 Å	1.88 Å	1.91 Å	
	Ni-C2	1.83 Å	1.86 Å	1.88 Å	1.87 Å	
	∠C-C-N-Ni	0.03°	7.89°	14.25°	5.59°	
NiN ₂ C ₂ -3_DV	Ni-N1	1.89 Å	1.91 Å	1.96 Å	1.90 Å	
	Ni-N2	1.89 Å	1.92 Å	1.96 Å	1.90 Å	
	Ni-C1	1.87 Å	1.88 Å	1.90 Å	1.87 Å	
	Ni-C2	1.87 Å	1.88 Å	1.90 Å	1.87 Å	
	∠C-C-N-Ni	0.01°	13.74°	17.89°	7.31°	

 Table S12. Bond length of Ni–N and Ni–C before and after intermediates adsorption.

Table S13. The d	-band center (ε_d)	and free energy	v change of	*COOH at	nd *H	formation	on
NiN ₂ C ₂ -1_DV, Nil	$N_2C_2-2_DV$, and $N_2C_2-2_DV$	$NiN_2C_2-3_DV.$					

	8 _d	ΔG_{*COOH}	ΔG_{*H}
NiN ₂ C ₂ -1_DV	-1.01	1.13	1.06
NiN ₂ C ₂ -2_DV	-0.91	1.18	0.69
NiN ₂ C ₂ -3_DV	-1.03	1.05	1.24