Electronic Supplementary Information

Born liquid to live solid: *in situ* polymerized electrolyte enables stable operation of organic - Li metal batteries

Guzaliya R. Baymuratova,^a Elena V. Shchurik,^a Nikita A. Emelianov,^a Alexander V. Mumyatov,^a Ivan S. Zhidkov,^{b,c} Alexander F. Shestakov,^{a,d} Olga V. Yarmolenko,^a Olga A. Kraevaya^{*a} and Pavel A. Troshin^{*e,a}

^{a.} Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Semenov Prospect 1, 142432, Chernogolovka, Moscow region, Russian Federation.

^{b.} Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg, Russian Federation.

^{*c.*} *M. N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences,* 620108 Yekaterinburg, Russian Federation.

^{d.} Department of Fundamental Physics & Chemical Engineering, M.V. Lomonosov Moscow State University, Leninskie Gory 1/51, 119991, Moscow, Russian Federation.

^{e.} Zhengzhou Research Institute of HT, Longyuan East 7th 26, Jinshui District, 450003, Zhengzhou, China.

Table of contents

Figure S1. Arrhenius dependence of the conductivity from the inverse temperature dependence in the range of -25-20 °C (a) and 20-95 °C (b) for GPE-based electrolyte
Figure S2. Dynamic viscosity versus time for DOL-based GPE (a) and carbonate-free LiTFSI/LiPF ₆ /DOL/DME at 25 °C
Figure S3. Equivalent circuits for Nyquist plots, where R1 is the electrolyte resistance, R2 is the resistance at the electrode/electrolyte interface; CPE is the Constant Phase Element; W is Warburg diffusion coefficient (o – open, s – short)
Table S1. Calculated parameters of equivalent cell circuits4
Figure S4. CV profiles for Li/electrolyte/PTPQ cells with 1M LiPF ₆ in EC/DMC (a); 1 M LiTFSI in DOL/DME (b) and <i>in situ</i> gelled electrolyte (c) in a potential range of $0.5-2.5$ V vs. Li ⁺ /Li (scan rate: 1 mV s ⁻¹)
Figure S5. Discharge specific capacities and Coulombic efficiencies of Li/electrolyte/PTPQ cells with 1M LiPF ₆ in EC/DMC (a, d), 1M LiTFSI in DOL/DME (b, e), and DOL-based gel-polymer electrolytes (c, f) during cycling at different current densities within a potential range of $0.5-2.5$ V vs. Li ⁺ /Li
Figure S6. Charge-discharge profiles for Li/electrolyte/PTPQ cells with 1M LiPF ₆ in EC/DMC (a); 1M LiTFSI in DOL/DME (b) and DOL-based GPE (c) in a potential range of 0.5–2.5 V vs. Li ⁺ /Li at the current rate of 35 mA g ⁻¹
Figure S7. Photographs of the separators extracted from the Li/electrolyte/PTPQ cells cycled with different electrolytes (for the liquid electrolytes, traces of dissolved PTPQ cathode material are visible (black coloration), and for GPE-based cells, yellowish color is for the polymer electrolyte attached to the separator)

Figure S8. PTPQ powder after long-time treatment with various electrolytes
Figure S9. The evolution of the discharge specific capacity and Coulombic efficiency of the Li//PTPQ cells with liquid and gelled electrolytes at 22 °C and 60 °C when cycled at the current density of 35 mAh g ⁻¹
Figure S10. FTIR spectra of Li anodes extracted from the Li//PTPQ cells with 1M LiPF ₆ in EC/DMC electrolytes (Li_SEI), liquid electrolyte and electrolyte components
Figure S11. Chromatogram of products of lithium interaction with DMC11
Figure S12. Chromatogram of products of lithium interaction with EC (a) and a mass spectrum of ethylene oxide (b)
Figure S13. Chromatogram of products of lithium interaction with EC/DMC (1:1 V:V)13
Figure S14. Results of XRD for the Li anodes cycled in the cells with 1M LiPF ₆ EC/DMC electrolyte and its comparison with the literature data for lithium carbonate and oxalate13
Figure S15. FTIR spectra of Li anodes extracted from the Li//PTPQ cells with 1M LiTFSI in DOL/DME electrolytes (Li_SEI), liquid electrolyte and electrolyte components14
Figure S16. FTIR spectra of Li anodes extracted from the Li//PTPQ cells with gel-polymer electrolyte (Li_SEI (GPE)), 1M LiTFSI in DOL/DME electrolyte (Li_SEI (liquid)), liquid electrolyte and LiTFSI
Figure S17. XPS survey and high-resolution N 1s and Li 1s spectra for the PTPQ cathode and Li anode extracted from the cells with 1M LiPF ₆ EC/DMC, 1M LiTFSI DOL/DME and DOL-based GPE electrolytes
Figure S18. XPS C 1s spectra for the PTPQ cathode and Li anode extracted from the cells with 1M LiPF ₆ EC/DMC, 1M LiTFSI DOL/DME and DOL-based GPE electrolytes17
Figure S19. XPS F 1s spectra for the PTPQ cathode and Li anode extracted from the cells with 1M LiPF ₆ EC/DMC, 1M LiTFSI DOL/DME and DOL-based GPE electrolytes18
Figure S20. XPS O 1s spectra for the PTPQ cathode and Li anode extracted from the cells with 1M LiPF ₆ EC/DMC, 1M LiTFSI DOL/DME and DOL-based GPE electrolytes19
Figure S21. XPS S 2p spectra for the PTPQ cathode and Li anode extracted from the cells with 1M LiPF ₆ EC/DMC, 1M LiTFSI DOL/DME and DOL-based GPE electrolytes20
Figure S22. XPS P 2p spectra for the PTPQ cathode and Li anode extracted from the cells with 1M LiPF ₆ EC/DMC, 1M LiTFSI DOL/DME and DOL-based GPE electrolytes21
Figure S23. Results of FTIR microscopy for the Li anodes cycled in 1M LiPF ₆ in EC/DMC: optical image (pixel size100x100 μ m, image size 50x50 pixels) and transmittance at 1640 cm ⁻¹ .
Figure S24. SEM image of organic cathode before cycling (a), extracted from the cells with 1M LiPF ₆ EC/DMC (b), 1M LiTFSI in DOL/DME (c) and DOL-based GPE (d)23
Figure S25. FTIR spectra of organic cathode before cycling, extracted from the cells with 1M LiPF6 EC/DMC, 1M LiTFSI in DOL/DME and DOL-based GPE

Figure S1. Arrhenius dependence of the conductivity from the inverse temperature dependence in the range of -25-20 °C (a) and 20-95 °C (b) for GPE-based electrolyte.

Figure S2. Dynamic viscosity versus time for DOL-based GPE (a) and carbonate-free LiTFSI/LiPF_6/DOL/DME at 25 °C.

	Symmetrical cells		Delithiation		Lithiation			
	Li // Li	PTPQ//P TPQ	Li // PTPQ (0.7V)	Li // PTPQ (2.5V)	Li // PTPQ (0.5V)		Li // PTPQ (1.1V)	
No. eq. circuits	1	2	1	3	1		4	
R1	1.7	2.2	6.8	8.8	8	R1	9.4	
R2	4.8	4.3	27	20	21	R2	14	
CPE1-T	1.4×10 ⁻⁶	1.5×10 ⁻⁷	7.6×10 ⁻⁵	9.2×10 ⁻⁶	2.4×10 ⁻⁵	CPE1-T	3.3×10 ⁻⁶	
CPE1-P	0.81	0.97	0.47	0.65	0.56	CPE1-P	0.72	
R3	217	9.1	172	32	137	R3	33	
CPE2-T	2.8×10 ⁻⁶	4.1×10 ⁻⁶	1.4×10 ⁻⁴	2×10 ⁻⁴	1.8×10 ⁻⁴	CPE2-T	5.1×10 ⁻⁵	
CPE2-P	0.88	0.98	0.67	0.7	0.62	CPE2-P	0.98	
Wo1-R	-	18.5	-	141*	-	R4	364	
Wo1-T	-	0.011	-	0.76*	-	CPE3-T	0.0021	
Wo1-P	-	0.44	-	0.43*	-	CPE3-P	0.38	

Table S1	Calculated	narameters o	of ea	uivalent	cell	circuits
	Calculated	parameters c	леч	uivaient	CCII	Gircuito

*-Warburg Short

Figure S4. CV profiles for Li/electrolyte/**PTPQ** cells with 1M LiPF₆ in EC/DMC (a); 1 M LiTFSI in DOL/DME (b) and *in situ* gelled electrolyte (c) in a potential range of 0.5–2.5 V vs. Li⁺/Li (scan rate: 1 mV s⁻¹).

Figure S5. Discharge specific capacities and Coulombic efficiencies of Li/electrolyte/**PTPQ** cells with 1M LiPF₆ in EC/DMC (a, d), 1M LiTFSI in DOL/DME (b, e), and DOL-based gel-polymer electrolytes (c, f) during cycling at different current densities within a potential range of 0.5–2.5 V vs. Li⁺/Li.

Figure S6. Charge-discharge profiles for Li/electrolyte/**PTPQ** cells with 1M LiPF₆ in EC/DMC (a); 1M LiTFSI in DOL/DME (b) and DOL-based GPE (c) in a potential range of 0.5-2.5 V vs. Li⁺/Li at the current rate of 35 mA g⁻¹.

Figure S7. Photographs of the separators extracted from the Li/electrolyte/**PTPQ** cells cycled with different electrolytes (for the liquid electrolytes, traces of dissolved **PTPQ** cathode material are visible (black coloration), and for GPE-based cells, yellowish color is for the polymer electrolyte attached to the separator).

Figure S8. **PTPQ** powder after long-time treatment with various electrolytes.

Figure S9. The evolution of the discharge specific capacity and Coulombic efficiency of the Li//**PTPQ** cells with liquid and gelled electrolytes at 22 °C and 60 °C when cycled at the current density of 35 mAh g⁻¹.

Figure S10. FTIR spectra of Li anodes extracted from the Li//**PTPQ** cells with 1M LiPF₆ in EC/DMC electrolytes (Li_SEI), liquid electrolyte and electrolyte components.

Figure S11. Chromatogram of products of lithium interaction with DMC.

Figure S12. Chromatogram of products of lithium interaction with EC (a) and a mass spectrum of ethylene oxide (b).

Figure S13. Chromatogram of products of lithium interaction with EC/DMC (1:1 V:V).

Figure S14. Results of XRD for the Li anodes cycled in the cells with 1M LiPF₆ EC/DMC electrolyte and its comparison with the literature data for lithium carbonate and oxalate.

Figure S15. FTIR spectra of Li anodes extracted from the Li//**PTPQ** cells with 1M LiTFSI in DOL/DME electrolytes (Li_SEI), liquid electrolyte and electrolyte components.

Figure S16. FTIR spectra of Li anodes extracted from the Li//**PTPQ** cells with gelpolymer electrolyte (Li_SEI (GPE)), 1M LiTFSI in DOL/DME electrolyte (Li_SEI (liquid)), liquid electrolyte and LiTFSI.

Figure S17. XPS survey and high-resolution N 1s and Li 1s spectra for the **PTPQ** cathode and Li anode extracted from the cells with 1M LiPF₆ EC/DMC, 1M LiTFSI DOL/DME and DOL-based GPE electrolytes.

Figure S18. XPS C 1s spectra for the **PTPQ** cathode and Li anode extracted from the cells with 1M LiPF₆ EC/DMC, 1M LiTFSI DOL/DME and DOL-based GPE electrolytes.

Figure S19. XPS F 1s spectra for the **PTPQ** cathode and Li anode extracted from the cells with 1M LiPF₆ EC/DMC, 1M LiTFSI DOL/DME and DOL-based GPE electrolytes.

Figure S20. XPS O 1s spectra for the **PTPQ** cathode and Li anode extracted from the cells with 1M LiPF₆ EC/DMC, 1M LiTFSI DOL/DME and DOL-based GPE electrolytes.

Figure S21. XPS S 2p spectra for the **PTPQ** cathode and Li anode extracted from the cells with 1M LiPF₆ EC/DMC, 1M LiTFSI DOL/DME and DOL-based GPE electrolytes.

Figure S22. XPS P 2p spectra for the **PTPQ** cathode and Li anode extracted from the cells with 1M LiPF₆ EC/DMC, 1M LiTFSI DOL/DME and DOL-based GPE electrolytes.

Figure S23. Results of FTIR microscopy for the Li anodes cycled in 1M LiPF₆ in EC/DMC: optical image (pixel size100x100 μ m, image size 50x50 pixels) and transmittance at 1640 cm⁻¹.

Figure S24. SEM image of organic cathode before cycling (a), extracted from the cells with 1M LiPF₆ EC/DMC (b), 1M LiTFSI in DOL/DME (c) and DOL-based GPE (d).

Figure S25. FTIR spectra of organic cathode before cycling, extracted from the cells with 1M LiPF6 EC/DMC, 1M LiTFSI in DOL/DME and DOL-based GPE.