Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information (SI)

Solar cells sensitized by doubly concerted companion dyes with optimized

donors to achieve high efficiencies up to 12.5%: a record efficiency for iodine

electrolyte-based DSSCs

Zhemin Li,^a Qingjun Lu,^a Yuqian Zhang,^a Qizhao Li,^a Wenjun Wu,^{*a} Shijun Li,^c Hailong Wang,^b Jianzhuang Jiang,^{*b} Chengjie Li,^{*a} and Yongshu Xie^{*a}

^aKey Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China

^bBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China

°College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China

*Email: yshxie@ecust.edu.cn; chengjie.li@ecust.edu.cn; jianzhuang@ustb.edu.cn; wjwu@ecust.edu.cn.

Contents

1 Experimental section	2
1.1 Materials and instrumentation	2
1.2 Fabrication of the solar cells	2
1.3 Theoretical calculation details	3
1.4 Synthetic section	4
2 Absorption and Emission spectra	20
3 Electrochemical behavior	22
4 Theoretical calculation	23
5 Photovoltaic properties	25
6 Electrochemical impedance spectroscopy	
7 Characterization spectra for the compounds	
8 Cartesian coordinates of the optimized structures	67
9 References	83

1 Experimental section

1.1 Materials and instrumentation

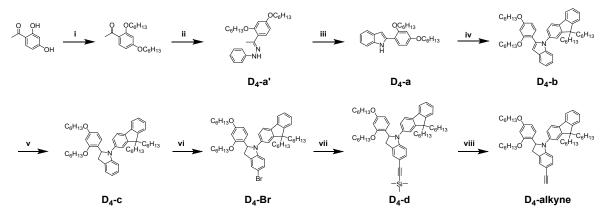
All reagents and solvents are commercially obtained without further purification unless otherwise stated. The FTO conducting glass (transparent Fluorine-doped SnO₂, transparency > 90% in the visible range, sheet resistance 15 Ω /square) was purchased from the Advanced Election Technology Co., Ltd. The TiO₂ paste (18 NR-T, 30 NR-D and 18 NR-AO) was purchased from the Greatcell Solar Industries Pty Ltd.

¹H NMR and ¹³C NMR spectra were measured using Bruker AM 400 or Ascend 600 spectrometer with tetramethylsilane (TMS) used as the internal standard. HRMS data were collected using the Thermo Scientific Q Exactive combined quadrupole mass spectrometer. The Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) was performed by a Shimadzu-kratos model Axima CFR⁺ mass spectrometer. UV-Vis absorption spectra and fluorescence spectra were recorded on a Shimadzu UV2600 spectrophotometer and Varian Cary Eclipse fluorescence spectrophotometer, respectively. IR spectra were measured using a Nicolet 6700 FTIR spectrometer with the ATR accessory. The cyclic voltammograms (CV) and differential pulse voltametric (DPV) of the dyes were measured in CH₂Cl₂ on a CorrTest electrochemical workstation using 0.1 M TBAPF₆ as the supporting electrolyte. A platinum ring, a platinum wire, and an Ag/AgCl electrode in saturated KCl solution were used as the working, counter and reference electrodes, respectively. The potentials were calibrated by using ferrocene/ferrocenium as the external reference. The scan rate was fixed at 100 mV s⁻¹.

The AM 1.5G sunlight simulator used in photovoltaic measurements was a 300 W xenon lamp (model No. 91160, Oriel) and was calibrated to 100 mW cm⁻² by employing a Newport Oriel PV reference cell system (model 91150 V). The J-V curves were measured by a Keithley 2400 source meter (Inc. USA), and the action spectra of the incident monochromatic photonto-electron conversion efficiency (IPCE) spectra were recorded by a Newport-74125 system (Newport Instruments). The intensity of monochromatic light was calibrated by a Si detector (Newport 71640). The electrochemical impedance spectroscopy (EIS) measurements were measured by a Zahner IM6e Impedance Analyzer (ZAHNER-Elektrik GmbH & CoKG, Kronach, Germany). The experimental EIS data were fitted by ZSimpWin software to give the chemical capacitances and the electron lifetimes.

1.2 Fabrication of the solar cells

All the FTO glasses for photoanodes and counter electrodes were rinsed sequentially with


detergent solution, deionized water, acetone and ethanol under ultrasonic conditions before use. For iodine-based electrolytes, TiO₂ photoanodes containing transmission and scattering layers were prepared by repetitive screen printing. After printing each layer, the TiO₂ photoanodes were left for 10 min and then dried at 130°C for 5 min. Later, the TiO₂ photoanodes were sintered with a programmed procedure at 275°C for 5 min, 325°C for 5 min, 375°C for 5 min, 450°C for 15 min, and 500°C for 15 min, respectively. After cooling to room temperature, the obtained photoanodes were chemically deposited with 40 mM TiCl₄ aqueous solution at 70°C for 30 min, rinsed with water and ethanol and then sintered again at 450°C for 30 min. The active area of the TiO_2 photoanode is 0.12 cm². Eventually, the photoanodes were immersed in a solution of the porphyrin dyes (0.2 mM), organic dyes (0.2 mM) and CC dyes (0.1 mM) in a mixture of chloroform and ethanol (v:v, 3:2) at 25°C for 12 h. For cobalt-based electrolyte, the FTO glass plates were immersed in 40 mM TiCl₄ aqueous solution at 70°C for 30 min, rinsed with water and ethanol and then sintered at 450°C for 30 min before screen printing. The remaining steps are the same as those for iodine-based electrolytes. The counter electrodes were made by spin-coating H₂PtCl₆ in 2-propanol onto FTO glass and then sintered at 400°C for 15 minutes. After injecting the electrolyte solution, fabrication of the DSSCs was accomplished by heat-sealing the two electrodes with Surlyn (25 µm). The iodine-based electrolyte contains 0.6 M 1-methyl-3-propylimidazolium iodide (PMII), 0.5 M 4-tert-butylpyridine (TBP), 0.1 M LiI and 0.05 M I_2 in acetonitrile. The cobalt-based electrolyte contains 0.22 M [Co(bpy)₃](TFSI)₂, 0.05 M [Co(bpy)₃](TFSI)₃, 0.1 M LiTFSI, and 0.5 M TBP in acetonitrile.

1.3 Theoretical calculation details

Density functional theory (DFT) calculations were carried out using Gaussian16 program package with a B3LYP/6-31G* and pm6 basis set.^{1–4}

1.4 Synthetic section

The starting material 2,4-dihydroxyacetophenone was purchased from commercial source and used as received. 2-bromo-9,9-dihexyl-9H-fluorene was prepared according to reported methods.^{5–6}

Scheme S1. Reaction conditions: i) 1-bromohexane, K₂CO₃, DMF, reflux; ii) phenylhydrazine, AcOH, EtOH, reflux; iii) ZnCl₂, o-DCB, 160°C; iv) 2-bromo-9,9-dihexyl-9H-fluorene, ^tBuONa, ^tBu₃PHBF₄, Pd(OAC)₂, p-xylene, reflux; v) NaBH₃CN, AcOH/DCM, rt; vi) NBS, DCM, rt; vii) Trimethylsilylacetylene (TMSA), CuI, PPh₃, Pd₂(PPh₃)₂Cl₂, Piperdine, 80°C; viii) Tetrabutylammonium fluoride (TBAF), THF, rt.

Synthesis of 2,4-Dihexyloxyacetophenone. The mixture of 2,4-dihydroxyacetophenone (2.10 g, 13.8 mmol), K₂CO₃ (3.55 g, 25.7 mmol) and 1-bromohexane (4.6 mL, 32.7 mmol) in DMF (40 mL) was stirred at 110°C for 10 h. After cooling to room temperature, the solution was poured into water and extracted with ethyl acetate (EA) (50 mL \times 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with petroleum ether (PE)/dichloromethane (DCM) (3/1, v/v) used as the eluent to give a yellow viscous liquid of 2,4-Dihexyloxyacetophenone (2.98 g, yield 68%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.82 (d, J = 8.7 Hz, 1H), 6.49 (dd, J = 8.8, 2.2 Hz, 1H), 6.42 (d, J = 2.1 Hz, 1H), 4.00 (dt, J = 12.9, 6.5 Hz, 4H), 2.59 (s, 3H), 1.80 (ddd, *J* = 27.8, 14.8, 6.8 Hz, 4H), 1.66 (s, 1H), 1.54 – 1.39 (m, 5H), 1.39 - 1.26 (m, 9H), 0.90 (t, J = 6.9 Hz, 7H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 197.70, 164.13, 160.70, 132.58, 120.90, 105.49, 99.20, 68.38, 33.89, 30.79, 29.12, 25.79, 22.57, 14.00. MS (MALDI-TOF, m/z): [M]⁺ calcd for C₂₀H₃₂O₃, 320.2351; Found, 320.1934. FT-IR (ATR, cm⁻¹): 2928 (s), 2857 (s), 1662 (m), 1595 (s), 1571 (m), 1498 (m), 1466 (m), 1431 (m), 1388 (m), 1356 (m), 1254 (s), 1182 (s), 1136 (m), 1066 (m), 1019 (m), 963 (m), 827 (m), 726 (w), 643 (w), 583 (m).

Synthesis of compound D_4 -a'. To the mixture of 2,4-Dihexyloxyacetophenone (3.65 g, 11.4 mmol) and phenylhydrazine (1.50 g, 13.8 mmol) in EtOH (10 mL) were added AcOH (0.65

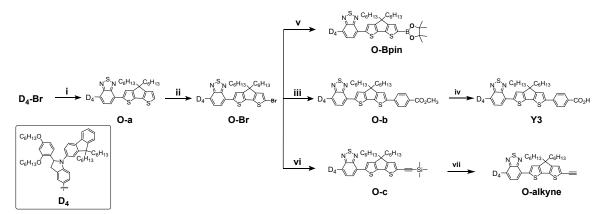
mL, 11.3 mmol) under nitrogen. The reaction was stirred at 80°C for 3 h under nitrogen. After cooling to room temperature, the solution was concentrated under reduced pressure. The obtained phenylhydrazone derivative D_4 -a' (3.55 g) was used for the next reaction without further purification.

Synthesis of compound D_4 -a. The mixture of D_4 -a'(2.26 g, 5.51 mmol) and ZnCl₂ (2.28 g, 16.8 mmol) in o-DCB (10 mL) was stirred at 160°C for 2 h under nitrogen. After cooling to room temperature, the solution was poured into water and extracted with DCM (50 mL \times 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/DCM (4/1, v/v) used as the eluent to give a white solid of **D**₄-a (1.53 g, yield 71%). ¹H NMR (600 MHz, acetone-d₆, ppm) δ 10.27 (s, 1H), 7.72 (d, J = 8.6 Hz, 1H), 7.51 (d, J = 7.8Hz, 1H), 7.39 (dd, J = 8.0, 0.6 Hz, 1H), 7.11 – 7.02 (m, 1H), 7.01 – 6.95 (m, 1H), 6.85 (d, J = 1.3 Hz, 1H), 6.68 (d, J = 2.3 Hz, 1H), 6.61 (dd, J = 8.6, 2.3 Hz, 1H), 4.16 (t, J = 6.5 Hz, 2H), 4.02 (t, J = 6.5 Hz, 2H), 2.00 - 1.88 (m, 2H), 1.77 (dq, J = 13.2, 6.5 Hz, 2H), 1.61 - 1.45 (m, 4H), 1.45 – 1.28 (m, 9H), 1.07 – 0.83 (m, 6H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 159.76, 156.39, 136.46, 135.80, 128.91, 128.27, 121.18, 119.74, 113.52, 110.59, 106.37, 100.47, 98.18, 68.86, 68.16, 31.61, 29.26, 25.88, 22.62, 14.05. MS (MALDI-TOF, m/z): [M]⁺ calcd for C₂₆H₃₅NO₂, 393.2668; Found, 393.2560. FT-IR (ATR, cm⁻¹): 3448 (s), 3046 (w), 2921 (s), 2852 (s), 1606 (m), 1573 (m), 1540 (w), 1435 (m), 1386 (w), 1348 (w), 1293 (s), 1249 (m), 1188 (m), 1140 (s), 1071 (m), 829 (m), 811 (m), 783 (m), 729 (s), 627 (m), 573 (m), 542 (s). mp 65-66°C.

Synthesis of compound D_4 -*b*. The mixture of 2-bromo-9,9-dihexyl-9H-fluorene (1.39 g, 3.36 mmol), D_4 -a (1.42 g, 3.61 mmol), 'BuONa (324 mg, 3.38 mmol), 'Bu₃PHBF₄ (52 mg, 0.18 mmol) and Pd(OAc)₂ (16.2 mg, 0.07 mmol) in p-xylene (20 mL) was stirred at 130°C for 3 h under nitrogen atmosphere. After cooling to room temperature, the solution was poured into water and extracted with DCM (50 mL × 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/DCM (8/1, v/v) used as the eluent to give a yellow oil of D_4 -b (949 mg, yield 37%). ¹H NMR (600 MHz, acetone-d₆, ppm) δ 7.86 (d, J = 8.0 Hz, 1H), 7.79 (dd, J = 12.0, 5.2 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.43 – 7.40 (m, 1H), 7.40 – 7.36 (m, 1H), 7.36 – 7.30 (m, 4H), 7.23 (d, J = 8.4 Hz, 1H), 7.14 (d, J = 1.7 Hz, 1H), 7.13 – 7.09 (m, 2H), 6.63 (s, 1H), 6.49 (dd, J = 8.4, 2.3 Hz, 1H), 6.44 (d, J = 2.2 Hz, 1H), 3.96 (t, J = 6.6 Hz, 2H), 3.78 (t, J = 6.6 Hz, 2H), 2.00 – 1.90 (m, 2H), 1.82 (td, J = 12.5, 5.0 Hz, 2H), 1.78 – 1.69 (m, 2H), 1.63 – 1.51 (m, 2H), 1.50 – 1.38 (m, 2H), 1.46 – 1.29 (m, 8H), 1.25 – 1.15 (m, 4H), 1.14 – 1.07 (m, 4H), 1.03 – 0.97 (m, 9H), 0.91 – 0.85 (m, 3H), 0.81 – 0.68 (m, 10H),

0.50 (s, 4H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.56, 157.82, 151.38, 150.92, 140.61, 139.29, 138.18, 137.95, 132.77, 128.54, 127.06, 126.87, 125.88, 122.87, 121.86, 121.57, 120.38, 120.16, 119.65, 114.95, 110.54, 104.42, 99.96, 68.13, 55.10, 40.43, 32.15, 30.88, 30.26, 28.04, 25.72, 23.76, 22.88, 21.82, 15.10, 12.26. HRMS (DART, m/z): [M+H]⁺ calcd for C₅₁H₆₈NO₂, 726.5250; Found, 726.5245. FT-IR (ATR, cm⁻¹): 3045 (m), 2953 (m), 2922 (s), 2851 (s), 1609 (m), 1574 (m), 1495 (m), 1455 (s), 1423 (m), 1375 (m), 1295 (s), 1256 (m), 1185 (m), 1129 (m), 1070 (w), 1045 (m), 1022 (m), 919 (m), 830 (m), 785 (s), 736 (s), 620 (m), 469 (m). mp 59–60°C.

Synthesis of compound D₄-c. To the solution of D₄-b (695 mg, 0.96 mmol) in AcOH/DCM (7/7 mL) was added NaBH₃CN (241 mg, 3.82 mmol) at 0°C under nitrogen. After the mixture was stirred for 4h at room temperature, the solution was poured into water and extracted with DCM (50 mL \times 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/DCM (4/1, v/v) used as the eluent to give a yellow oil of D_4 -c (571) mg, yield 82%). ¹H NMR (600 MHz, Acetone, ppm) δ 7.62 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 7.3 Hz, 1H), 7.25 (dd, J = 7.4, 1.0 Hz, 1H), 7.22 – 7.17 (m, 3H), 7.15 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 7.2 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 6.74 (td, J = 7.4, 0.5 Hz, 1H), 6.55 (d, J = 2.3 Hz, 1H), 6.32 (dd, J = 8.5, 2.3 Hz, 1H), 5.75 (dd, J = 9.4, 7.3 Hz, 1H), 4.09 (t, J = 6.3 Hz, 2H), 3.89 (td, J = 6.5, 2.0 Hz, 2H), 3.61 (dd, J = 15.6, 9.5 Hz, 1H), 2.94 (dd, J = 15.6, 7.2 Hz, 1H), 1.89 -1.78 (m, 3H), 1.76 - 1.67 (m, 3H), 1.62 - 1.52 (m, 2H), 1.48 - 1.35 (m, 2H), 1.31 (tt, J = 7.7, 3.9 Hz, 6H, 1.17 - 1.02 (m, 5H), 0.98 (dd, J = 13.6, 6.7 Hz, 9H), 0.92 (t, J = 7.1 Hz, 10H), 0.77 (t, J = 7.3 Hz, 6H), 0.64 (dd, J = 6.9, 4.4 Hz, 2H), 0.48 – 0.35 (m, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 159.32, 157.00, 151.47, 150.33, 148.20, 142.68, 141.23, 134.55, 130.05, 127.57, 127.08, 126.59, 125.77, 125.09, 123.02, 122.56, 119.90, 118.83, 118.18, 113.41, 108.28, 104.48, 99.52, 67.92, 61.55, 54.82, 40.47, 38.19, 31.56, 29.58, 25.86, 23.67, 22.62, 14.04. HRMS (DART, m/z): [M+H]⁺ calcd for C₅₁H₇₀NO₂, 728.5407; Found, 728.5393. FT-IR (ATR, cm⁻¹): 2965 (m), 2924 (s), 2853 (s), 1603 (m), 1494 (m), 1477 (m), 1453 (s), 1381 (m), 1292 (m), 1259 (m), 1174 (s), 1114 (m), 1024 (m), 907 (m), 824 (m), 733 (s), 634 (w), 592 (w), 470 (w), 423 (w).


Synthesis of compound D_4 -Br. To the solution of D_4 -c (490 mg, 0.67 mmol) in DCM (10 mL) was added an DCM solution (10 mL) of NBS (119 mg, 0.67 mmol) dropwise at 0°C. After the mixture was stirred for 0.5 h at room temperature, the solution was poured into water and extracted with DCM (50 mL × 3). The combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/DCM (3/1, v/v) used as the eluent to give a yellow oil of D_4 -

Br (482 mg, yield 89%). ¹H NMR (600 MHz, acetone-d₆, ppm) δ 7.61 (dd, *J* = 7.7, 2.5 Hz, 2H), 7.33 (d, *J* = 7.3 Hz, 1H), 7.23 (d, *J* = 7.4 Hz, 1H), 7.20 (d, *J* = 7.2 Hz, 2H), 7.18 (s, 1H), 7.17 (d, *J* = 3.7 Hz, 2H), 7.13 (d, *J* = 8.5 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.52 (d, *J* = 2.0 Hz, 1H), 6.32 (dd, *J* = 8.5, 2.1 Hz, 1H), 5.76 (dd, *J* = 9.2, 8.0 Hz, 1H), 4.05 (dd, *J* = 9.9, 5.8 Hz, 2H), 3.87 (td, *J* = 6.5, 1.8 Hz, 2H), 3.59 (dd, *J* = 16.0, 9.8 Hz, 1H), 3.00 (dd, *J* = 15.7, 7.0 Hz, 1H), 1.98 – 1.87 (m, 3H), 1.81 (dt, *J* = 12.4, 5.2 Hz, 3H), 1.72 – 1.65 (m, 2H), 1.53 (s, 2H), 1.44 – 1.34 (m, 7H), 1.34 – 1.26 (m, 9H), 1.10 (dt, *J* = 14.0, 7.0 Hz, 5H), 1.07 – 1.01 (m, 4H), 1.00 – 0.90 (m, 4H), 0.90 – 0.84 (m, 5H), 0.76 (td, *J* = 7.3, 3.4 Hz, 7H), 0.60 (d, *J* = 4.9 Hz, 2H), 0.42 (d, *J* = 4.2 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 159.52, 157.02, 151.59, 150.33, 147.42, 142.17, 141.05, 135.07, 132.52, 129.69, 127.81, 126.64, 125.97, 122.52, 119.99, 118.82, 118.34, 113.66, 110.07, 109.40, 104.46, 99.60, 67.94, 62.17, 54.85, 40.43, 37.73, 31.90, 30.92, 30.18, 28.75, 25.87, 23.67, 22.62, 14.60, 13.32. HRMS (DART, m/z): [M+H]⁺ calcd for C₅₁H₆₉BrNO₂, 806.4512; Found, 806.4488. FT-IR (ATR, cm⁻¹): 2952 (m), 2924 (m), 2853 (m), 1610 (m), 1587 (m), 1494 (m), 1471 (s), 1454 (m), 1377 (w), 1292 (m), 1257 (m), 1173 (s), 1114 (m), 1024 (m), 831 (w), 801 (m), 736 (s), 634 (m), 594 (w).

Synthesis of compound D₄-d. The mixture of D₄-Br (285 mg, 0.35 mmol), Pd (PPh₃)₂Cl₂ (12.4 mg, 0.02 mmol), CuI (2.06 mg, 0.01 mmol) and PPh₃ (13.8 mg, 0.05 mmol) in piperidine (5 mL) was stirred at 80°C under nitrogen, and then TMSA (0.3 mL, 2.12 mmol) was added via a syringe over 10 min. After the mixture was stirred at 80°C for 8 h and cooling to room temperature, the solution was poured into water and extracted with DCM (50 mL \times 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/DCM (6/1, v/v) used as the eluent to give a yellow oil of D_4 -d (169 mg, yield 58%). ¹H NMR (600 MHz, Acetone, ppm) δ 7.63 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 7.2 Hz, 1H), 7.25 (td, J = 7.4, 1.1 Hz, 1H), 7.22 (dd, J = 3.2, 1.6 Hz, 1H), 7.21 – 7.19 (m, 2H), 7.19 – 7.16 (m, 2H), 7.13 (d, J = 8.5 Hz, 1H), 6.99 (d, J = 8.2 Hz, 1H), 6.51 (d, J = 2.0 Hz, 1H), 6.32 (dd, J = 8.5, 2.3 Hz, 1H), 5.82 – 5.74 (m, 1H), 4.04 (d, J = 5.9 Hz, 2H), 3.87 (td, J = 6.5, 2.4 Hz, 2H), 3.58 (dd, J = 15.8, 10.0 Hz, 1H), 3.01 (dd, J = 15.0, 6.4 Hz, 1H), 1.98 - 1.87 (m, 3H), 1.86 - 1.75(m, 3H), 1.73 – 1.65 (m, 2H), 1.51 (s, 2H), 1.44 – 1.39 (m, 7H), 1.39 – 1.33 (m, 5H), 1.32 – 1.27 (m, 9H), 1.16 – 1.07 (m, 8H), 1.02 – 0.95 (m, 4H), 0.87 (m, 7H), 0.62 – 0.53 (m, 2H), 0.41 (m, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 159.28, 156.82, 151.32, 150.15, 148.36, 141.58, 140.82, 135.07, 131.70, 129.84, 128.31, 126.44, 125.81, 122.36, 119.74, 118.65, 113.93, 112.38, 107.32, 106.46, 104.27, 99.36, 90.99, 67.73, 61.80, 54.64, 40.24, 37.39, 31.35, 29.77, 27.53, 25.67, 23.45, 22.42, 13.86. MS (MALDI-TOF, m/z): [M]⁺ calcd for C₅₆H₇₇NO₂Si, 823.5724; Found, 823.5968. FT-IR (ATR, cm⁻¹): 2920 (s), 2850 (s), 2192 (m) 1682 (m), 1600

(m), 1491 (s), 1463 (m), 1388 (w), 1294 (m), 1239 (m), 1175 (s), 1131 (m), 1001 (m), 888 (w), 810 (m), 721 (s), 635 (m), 538 (m).

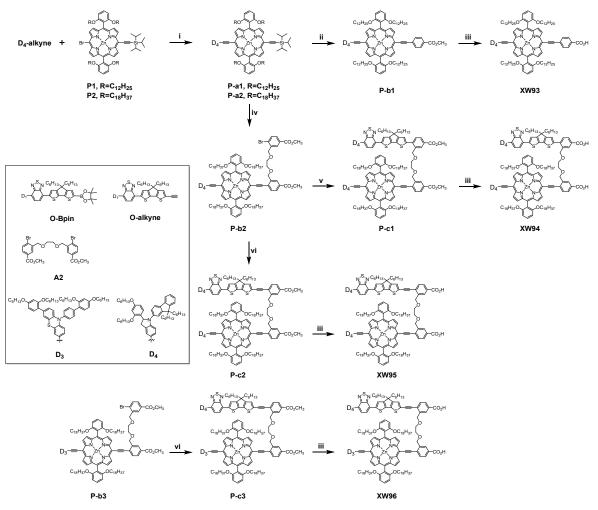
Synthesis of compound D_4 -alkyne. To the solution of D_4 -d (425 mg, 0.52 mmol) in THF (10 mL) was added TBAF (1 M, 1.3 mL) at room temperature. After the mixture was stirred for 0.5 h at room temperature, the solution was poured into water and extracted with DCM (50 mL × 3). The combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained crude product of D_4 -alkyne (383 mg) was used for the next reaction without further purification.

Scheme S2. Reaction conditions: i) n-BuLi, trimethylborate, THF, -78 °C; then, 4-bromo-7-(4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)benzo[c][1,2,5]thiadiazole, Sphos, K₃PO₄, Pd₂(dba)₃, THF, reflux; ii) NBS, THF, rt; iii) Methyl 4-boronobenzoate acid, Sphos, K₃PO₄, Pd₂(dba)₃, THF, reflux; iv) LiOH·H₂O, THF, H₂O, reflux; v) bis(pinacolato)diboron, Pd(PPh₃)₂Cl₂, KOAc, 1,4-dioxane, 80 °C; vi) Trimethylsilylacetylene, CuI, PPh₃, Pd₂(PPh₃)₂Cl₂, Piperdine, refulx; vii) TBAF, THF, rt.

Synthesis of compound O-a. To the solution of D₄-Br (650 mg, 0.81 mmol) in dry THF (10 mL) was added n-BuLi (2.4 M in THF, 0.4 mL) dropwise at -78°C under nitrogen atmosphere. Stirring was continued at -78°C for 1 h and subsequently a solution of trimethylborate (0.15 mL, 1.27 mmol) was added dropwise. The reaction mixture was stirred at -78°C for 3 h followed of 4-bromo-7-(4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2by the addition yl)benzo[c][1,2,5]thiadiazole⁷ (375 mg, 0.67 mmol), Sphos (55.0 mg, 0.13 mmol), K₃PO₄ (426 mg, 2.01 mmol) and $Pd_2(dba)_3$ (36.8 mg, 0.04 mmol), and then stirred at 80°C for 10 h under nitrogen atmosphere. After cooling to room temperature, the solution was poured into water and extracted with DCM (50 mL \times 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/DCM (5/1, v/v) used as the eluent to give a purplish red solid of **O-a** (573 mg, yield 59%). ¹H NMR (600 MHz, CD₂Cl₂, ppm) δ 7.98 (s, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.74 (dd, J = 10.9, 2.6 Hz, 2H), 7.59 - 7.55 (m, 2H), 7.48 (dd, J = 7.8, 5.3)Hz, 2H), 7.23 – 7.18 (m, 2H), 7.18 – 7.16 (m, 1H), 7.15 (dd, J = 9.1, 2.9 Hz, 1H), 7.11 (td, J = 7.4, 1.0 Hz, 1H), 7.07 (dd, J = 8.4, 3.2 Hz, 2H), 6.91 (d, J = 4.8 Hz, 1H), 6.38 (d, J = 2.2 Hz, 1H), 6.21 (dd, J = 8.5, 2.3 Hz, 1H), 5.73 (dd, J = 9.2, 6.6 Hz, 1H), 3.95 (t, J = 6.3 Hz, 2H), 3.75 (t, J = 6.7 Hz, 2H), 3.66 (dd, J = 15.7, 9.6 Hz, 1H), 2.97 (dd, J = 15.5, 6.0 Hz, 1H), 1.88 – 1.79 (m, 8H), 1.80 – 1.67 (m, 6H), 1.66 – 1.54 (m, 3H), 1.33 – 1.24 (m, 7H), 1.23 – 1.14 (m, 6H), 1.13 - 0.96 (m, 24H), 0.93 - 0.86 (m, 7H), 0.84 - 0.76 (m, 7H), 0.69 (m, 14H), 0.62 - 0.47 (m, 2H), 0.38 (s, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 158.41, 157.87, 157.59, 155.96, 153.15,

151.88, 151.65, 150.56, 149.33, 147.35, 141.18, 140.10, 138.59, 137.09, 135.65, 133.90, 131.24, 129.64, 129.64, 127.59, 127.11, 126.60, 125.55, 124.82, 124.47, 123.51, 121.66, 120.65, 118.98, 117.78, 117.28, 112.85, 112.51, 107.24, 103.49, 98.56, 66.93, 60.94, 53.86, 52.73, 39.45, 36.96, 31.08, 30.12, 29.08, 28.54, 28.51, 27.77, 24.84, 23.55, 22.68, 21.59, 13.03. MS (MALDI-TOF, m/z): $[M]^+$ calcd for $C_{78}H_{99}N_3O_2S_3$, 1205.6899; Found, 1205.6892. FT-IR (ATR, cm⁻¹): 2964 (m), 2922 (s), 2852 (m), 1607 (m), 1493 (m), 1458 (s), 1376 (m), 1259 (m), 1180 (m), 1081 (m), 1020 (m), 798 (s), 737 (m), 659 (w), 491 (w). mp 128–129°C.

Synthesis of compound O-Br. To the solution of O-a (530 mg, 0.44 mmol) in DCM (10 mL) was added an DCM solution (5 mL) of NBS (70.4 mg, 0.40 mmol) dropwise at 0°C. After the mixture was stirred for 1 h at room temperature, the solution was poured into water and extracted with DCM (50 mL \times 3). The combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/DCM (9/1, v/v) used as the eluent to give a yellow oil of **O**-**Br** (474 mg, yield 84%). ¹H NMR (600 MHz, CD_2Cl_2 , ppm) δ 7.95 (s, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.75 - 7.69 (m, 2H), 7.61 - 7.54 (m, 2H), 7.52 - 7.44 (m, 2H), 7.20 (t, J = 7.7 Hz, 1H), 7.18 - 7.14 (m, 2H), 7.12 (d, J = 7.3 Hz, 1H), 7.09 - 7.04 (m, 2H), 6.93 (d, J = 1.0 Hz, 1H), 6.38 (s, 1H), 6.20 (d, J = 8.5 Hz, 1H), 5.72 (d, J = 6.8 Hz, 1H), 3.94 (t, J = 6.1 Hz, 2H), 3.75 (t, J = 6.6 Hz, 2H), 3.66 (dd, J = 15.5, 9.7 Hz, 1H), 2.97 (dd, J = 15.0, 4.8 Hz, 1H), 1.86 – 1.73 (m, 11H), 1.63 – 1.54 (m, 2H), 1.45 (s, 3H), 1.29 (m, 7H), 1.19 (m, 6H), 1.13 – 0.96 (m, 22H), 0.91 (m, 9H), 0.79 (m, 7H), 0.74 – 0.61 (m, 13H), 0.62 – 0.45 (m, 2H), 0.37 (s, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 159.44, 157.98, 157.05, 154.14, 152.90, 152.62, 151.58, 150.35, 148.44, 142.14, 141.11, 140.17, 137.50, 137.09, 134.96, 132.39, 130.68, 128.64, 128.04, 127.62, 126.54, 126.14, 125.40, 124.72, 122.67, 121.34, 120.00, 118.81, 118.33, 113.72, 111.49, 108.25, 104.51, 99.58, 67.95, 61.97, 54.76, 40.47, 37.93, 32.10, 31.24, 30.10, 29.66, 29.54, 29.14, 27.20, 25.87, 24.54, 23.61, 22.75, 22.17, 14.06. MS (MALDI-TOF, m/z): [M]⁺ calcd for C78H98BrN3O2S3, 1283.6005; Found, 1283.5254. FT-IR (ATR, cm⁻¹): 2924 (s), 2850 (s), 2190 (m), 1606 (m), 1467 (s), 1385 (m), 1291 (m), 1178 (s), 1130 (m), 1023 (m), 881 (w), 812 (m), 723 (m), 638 (m), 515 (w), 437 (m). mp 113–114°C.

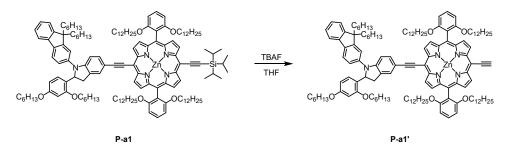

Synthesis of compound O-b. The mixture of O-Br (115 mg, 0.09 mmol) and 4methoxyphenylboronic acid (64.1 mg, 0.36 mmol), K_3PO_4 (56.9 mg, 0.27 mmol), Sphos (3.7 mg, 0.01 mmol) and Pd₂(dba)₃ (4.5 mg, 0.01 mmol) in THF (10 mL) was stirred at 80°C for 6 h under nitrogen atmosphere. After cooling to room temperature, the solution was poured into water and extracted with DCM (50 mL × 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/DCM (2/1, v/v) used as the eluent to give a dark purple solid of **O-b** (51.6 mg, yield 43%). ¹H NMR (600 MHz, CD₂Cl₂, ppm) δ 7.99 (s, 1H), 7.91 (d, J = 8.5 Hz, 2H), 7.82 (d, J = 7.5 Hz, 1H), 7.77 – 7.71 (m, 2H), 7.59 (t, J= 7.5 Hz, 3H), 7.52 – 7.47 (m, 2H), 7.30 (s, 1H), 7.24 – 7.18 (m, 2H), 7.17 (dd, J = 5.5, 1.6 Hz, 2H), 7.12 (td, J = 7.4, 0.9 Hz, 1H), 7.09 – 7.05 (m, 2H), 6.38 (d, J = 2.2 Hz, 1H), 6.21 (dd, J = 2.2 Hz, 1H), 7.2 (dd, J = 2. 8.5, 2.2 Hz, 1H), 5.76 – 5.70 (m, 1H), 3.95 (t, *J* = 6.3 Hz, 2H), 3.79 (s, 3H), 3.75 (t, *J* = 6.7 Hz, 2H), 3.66 (dd, *J* = 15.8, 9.7 Hz, 1H), 2.98 (dd, *J* = 15.2, 5.4 Hz, 1H), 1.93 – 1.86 (m, 5H), 1.86 -1.79 (m, 3H), 1.76 (m, 3H), 1.64 - 1.58 (m, 2H), 1.46 (s, 3H), 1.33 - 1.24 (m, 8H), 1.23 -1.15 (m, 8H), 1.14 – 1.03 (m, 17H), 1.01 (m, 11H), 0.91 (m, 5H), 0.85 – 0.77 (m, 7H), 0.73 – 0.67 (m, 14H), 0.56 (m, 2H), 0.37 (s, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 166.77, 160.00, 159.05, 157.02, 154.20, 152.69, 151.61, 150.39, 148.49, 143.43, 142.17, 141.06, 139.51, 137.97, 135.00, 132.59, 130.72, 130.34, 128.69, 128.10, 126.57, 126.15, 125.48, 124.69, 122.69, 121.45, 120.02, 118.96, 118.37, 113.60, 108.29, 104.54, 99.61, 67.98, 54.92, 54.28, 53.42, 52.07, 41.36, 40.50, 38.04, 36.08, 34.60, 31.55, 30.35, 29.65, 29.28, 27.68, 26.92, 26.45, 25.62, 25.29, 24.64, 23.72, 22.61, 20.58, 19.44, 18.77, 14.71, 13.67, 11.44. MS (MALDI-TOF, m/z): [M]⁺ calcd for C₈₆H₁₀₅N₃O₄S₃, 1339.7267; Found, 1339.5566. FT-IR (ATR, cm⁻¹): 2925 (s), 2850 (s), 2197 (m) 1607 (m), 1579 (m), 1460 (s), 1385 (m), 1290 (m), 1247 (m), 1171 (m), 1133 (m), 1013 (m), 1002 (m), 882 (w), 831 (s), 793 (m), 725 (m), 635 (w), 576 (m), 442 (m). mp 117–118°C.

Synthesis of compound O-c. The mixture of O-Br (156 mg, 0.12 mmol), Pd (PPh₃)₂Cl₂ (5.3 mg, 0.01 mmol), CuI (1.0 mg, 0.01 mmol) and PPh₃ (4.8 mg, 0.02 mmol) in THF/Et₃N (10/10 mL) was stirred at 80°C under nitrogen atmosphere, and then TMSA (0.1 mL, 0.71 mmol) was added via a syringe over 10 min. After the mixture was stirred at 80°C for 8 h and cooled to room temperature, the solution was poured into water and extracted with DCM (50 mL \times 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/DCM (5/1, v/v) used as the eluent to give a dark purple solid of **O-c** (118 mg, yield 75%). ¹H NMR (600 MHz, CD₂Cl₂, ppm) δ 7.97 (d, J = 12.9 Hz, 1H), 7.81 (dd, J = 7.5, 5.3 Hz, 1H), 7.77 - 7.72 (m, 2H), 7.58 (dd, J = 7.6, 2.1 Hz, 1H), 7.53 - 7.45 (m, 2H), 7.23 - 7.15 (m, 4H), 7.12 (ddd, J = 9.1, 8.1, 2.8 Hz, 1H), 7.09 – 7.03 (m, 2H), 6.38 (d, J = 1.6 Hz, 1H), 6.21 (dd, J= 8.6, 1.9 Hz, 1H), 5.72 (dd, J = 9.1, 6.7 Hz, 1H), 3.94 (t, J = 6.2 Hz, 2H), 3.75 (t, J = 6.6 Hz, 2H), 3.66 (dd, *J* = 15.6, 9.6 Hz, 1H), 2.97 (dd, *J* = 15.5, 5.9 Hz, 1H), 1.88 – 1.69 (m, 10H), 1.66 - 1.56 (m, 3H), 1.44 (m, 2H), 1.34 - 1.25 (m, 6H), 1.25 - 1.16 (m, 6H), 1.14 - 0.96 (m, 22H), 0.95 – 0.85 (m, 8H), 0.80 (m, 6H), 0.70 (m, 12H), 0.56 (m, 2H), 0.37 (s, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.41, 159.51, 158.95, 158.67, 157.37, 157.05, 154.24, 152.73, 151.64, 150.42, 148.49, 142.22, 141.15, 139.67, 138.82, 138.18, 137.57, 136.74, 135.02, 132.72, 132.33, 130.74, 128.70, 128.15, 127.68, 127.30, 126.90, 126.40, 125.92, 125.59, 124.92, 124.61, 122.73, 121.72, 121.33, 120.05, 118.86, 118.41, 113.64, 108.32, 104.57, 99.93, 99.64, 99.11, 68.01, 62.03, 54.94, 54.17, 53.82, 40.53, 38.03, 31.97, 31.31, 30.08, 29.65, 29.63, 29.03, 26.07, 25.78, 24.60, 23.75, 23.14, 22.22, 14.11. MS (MALDI-TOF, m/z): $[M]^+$ calcd for $C_{83}H_{107}N_3O_2S_3Si$, 1301.7295; Found, 1301.5756. FT-IR (ATR, cm⁻¹): 2962 (m), 2922 (s), 2850 (s), 2128 (m), 2012 (m), 1603 (m), 1492 (m), 1470 (s), 1375 (m), 1246 (m), 1173 (m), 1115 (w), 1019 (m), 837 (m), 730 (m), 509 (m). mp 103–104°C.

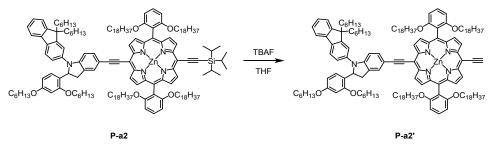
Synthesis of compound O-Bpin. The mixture of **O-Br** (210 mg, 0.16 mmol), bis(pinacolato)diboron (124 mg, 0.49 mmol), KOAc (48.1 mg, 0.49 mmol) and Pd(PPh₃)₂Cl₂ (11.5 mg, 0.02 mmol) in 1,4-dioxane (10 mL) was stirred at 80°C for 4 h under nitrogen atmosphere. After cooling to room temperature, the solution was poured into water and extracted with DCM (50 mL \times 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was rapidly passed through a short silica gel column chromatography with PE/DCM (1/1, v/v) used as the eluent to give the crude product **O-Bpin** (128 mg), which was used for the next reaction without further purification.

Synthesis of compound O-alkyne. To the solution of O-c (109 mg, 0.08 mmol) in THF (10 mL) was added TBAF (1 M, 0.2 mL) at room temperature. After the mixture was stirred for 0.5 h at room temperature, the solution was poured into water and extracted with DCM (50 mL \times 3). The combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained crude product of O-alkyne (95.1 mg) was used for the next reaction without further purification.

Synthesis of compound Y3. The intermediate **O-b** was hydrolyzed by LiOH·H₂O under nitrogen atmosphere to give **Y3** (refer to experimental section of the main text for more details).



Scheme S3. Reaction conditions: i) $Pd_2(dba)_3$, $AsPh_3$, ${}^{t}Bu_3P HBF_4$, THF/Et_3N , reflux; ii) TBAF, THF, rt; then, methyl 4-iodobenzoate, $Pd_2(dba)_3$, $AsPh_3$, ${}^{t}Bu_3P HBF_4$, THF/Et_3N , reflux; iii) LiOH·H₂O, THF/H₂O, reflux. iv) TBAF, THF, rt; then, A2, $Pd_2(dba)_3$, $AsPh_3$, ${}^{t}Bu_3P \cdot HBF_4$, THF/Et₃N, reflux; v) **O-Bpin**, $Pd_2(dba)_3$, Sphos, K_3PO_4 , THF/Et₃N, reflux; vi) **O-alkyne**, $Pd_2(dba)_3$, $AsPh_3$, ${}^{t}Bu_3P \cdot HBF_4$, THF/Et₃N.


Synthesis of compound P-a1. The mixture of D_4 -alkyne (346 mg, 0.46 mmol), porphyrin derivative P1⁸ (558 mg, 0.37 mmol), AsPh₃ (226 mg, 0.74 mmol), 'Bu₃P·HBF₄ (13.5 mg, 0.05 mmol) and Pd₂(dba)₃ (25.8 mg, 0.03 mmol) in THF/Et₃N (10/10 mL) was stirred at 80°C for 12 h under nitrogen. After cooling to room temperature, the solution was poured into water and extracted with DCM (50 mL × 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/DCM (3/1, v/v) used as the eluent to give a green tar of P-a1 (425 mg, yield 53%). ¹H NMR (400 MHz, CD₂Cl₂, ppm) δ 9.61 (d, *J* = 4.6 Hz, 2H), 9.55 (d, *J* = 4.6 Hz, 2H), 8.73 (dd, *J* = 8.7, 4.6 Hz, 4H), 7.78 – 7.67 (m, 2H), 7.61 (t, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.25 – 7.17 (m, 4H), 7.13 (ddd, *J* = 8.6, 4.5, 1.8 Hz, 3H), 6.93 (t, *J* = 7.6 Hz, 4H), 6.38 (d, *J* = 2.2 Hz, 1H), 6.24 (dd, *J* = 8.5, 2.2 Hz, 1H), 5.85 – 5.73 (m, 1H),

3.96 (t, J = 6.3 Hz, 2H), 3.76 (dd, J = 11.2, 6.0 Hz, 10H), 3.73 – 3.62 (m, 1H), 3.14 – 2.92 (m, 1H), 1.81 (m, 6H), 1.65 – 1.56 (m, 2H), 1.47 (m, 3H), 1.40 – 1.27 (m, 25H), 1.24 – 1.15 (m, 8H), 1.14 – 1.04 (m, 10H), 1.04 – 0.90 (m, 25H), 0.89 – 0.77 (m, 21H), 0.77 – 0.67 (m, 30H), 0.62 – 0.50 (m, 11H), 0.40 (m, 18H), 0.34 – 0.21 (m, 9H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 161.18, 160.02, 159.60, 157.16, 152.35, 151.59, 150.50, 148.52, 142.00, 141.18, 135.34, 132.02, 131.59, 130.67, 129.79, 128.27, 126.74, 126.08, 122.71, 121.18, 120.11, 118.85, 115.18, 114.21, 108.18, 105.40, 104.64, 102.34, 99.76, 97.57, 96.46, 91.26, 68.80, 68.06, 54.99, 53.43, 40.58, 37.96, 32.32, 31.21, 30.26, 28.27, 26.15, 25.81, 25.30, 23.80, 23.25, 22.32, 19.13, 14.15, 11.91. MS (MALDI-TOF, m/z): [M]⁺ calcd for C₁₄₄H₂₀₃N₅O₆SiZn, 2190.4794; Found, 2190.5146. FT-IR (ATR, cm⁻¹): 2920 (s), 2850 (s), 2184 (m), 2135 (w), 1719 (m), 1585 (m), 1489 (m), 1453 (s), 1377 (m), 1339 (w), 1245 (m), 1206 (m), 1174 (w), 1097 (s), 997 (s), 880 (w), 791 (m), 736 (m), 710 (m), 653 (m), 571 (m). mp 132–134°C.

Synthesis of compound P-a2. The synthetic procedure resembles that for synthesizing compound **P-a1** except using the porphyrin derivative **P2**⁸ (763 mg, 0.41 mmol) instead of the porphyrin derivative P1. A green tar of P-a2 was obtained (632 mg, 61%). ¹H NMR (600 MHz, CD_2Cl_2 , ppm) δ 9.53 (dd, J = 34.2, 4.3 Hz, 4H), 8.68 (dd, J = 12.3, 4.3 Hz, 4H), 7.78 – 7.67 (m, 1H), 7.60 (t, J = 8.6 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.25 – 7.17 (m, 2H), 7.16 – 7.07 (m, 4H), 6.91 (d, J = 8.7 Hz, 3H), 6.39 (d, J = 2.1 Hz, 4H), 6.24 (dd, J = 8.6, 2.2 Hz, 1H), 5.80 (t, *J* = 8.1 Hz, 1H), 3.97 (t, *J* = 6.2 Hz, 1H), 3.76 (dd, *J* = 15.2, 7.9 Hz, 2H), 3.69 (d, *J* = 9.7 Hz, 10H), 3.17 – 2.93 (m, 1H), 1.96 – 1.69 (m, 7H), 1.62 (m, 2H), 1.49 (s, 2H), 1.47 – 1.28 (m, 32H), 1.26 – 0.98 (m, 85H), 0.92 – 0.68 (m, 28H), 0.59 (m, 34H), 0.54 – 0.32 (m, 24H), 0.29 (s, 10H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 158.93, 158.51, 156.06, 151.23, 150.47, 149.39, 147.39, 140.91, 140.09, 134.23, 130.85, 130.45, 129.55, 128.66, 127.16, 125.64, 124.97, 121.63, 120.16, 119.01, 117.74, 113.97, 113.13, 109.16, 107.09, 104.30, 103.53, 101.07, 98.62, 96.36, 95.20, 90.27, 67.72, 66.97, 63.68, 53.89, 39.48, 36.87, 31.39, 29.86, 29.11, 27.18, 25.05, 24.72, 24.19, 22.71, 22.52, 21.12, 18.05, 13.36, 12.57, 10.93. MS (MALDI-TOF, m/z): [M]⁺ calcd for C₁₆₈H₂₅₁N₅O₆SiZn, 2526.8550; Found, 2526.7678. FT-IR (ATR, cm⁻¹): 2919 (s), 2849 (s), 2185 (w), 2136 (w), 1585 (m), 1489 (m), 1453 (s), 1377 (m), 1338 (w), 1294 (m), 1246 (m), 1208 (m), 1176 (m), 1097 (s), 1060 (m), 997 (s), 880 (m), 792 (m), 769 (m), 736 (s), 655 (m), 571 (m). mp 143–144°C.

Synthesis of compound P-a1'. To the solution of P-a1 (396 mg, 0.18 mmol) in THF (20 mL) was added TBAF (1 M, 0.5 mL) at room temperature. After the mixture was stirred for 0.5 h at room temperature, the solution was poured into water and extracted with DCM (50 mL \times 3). The combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained crude product of P-a1'(351 mg) was used for the next reaction without further purification.

Synthesis of compound P-a2'. The synthetic procedure resembles that for synthesizing compound P-a1'except using P-a2 (576 mg, 0.23 mmol) instead of P-a1. The obtained crude product of P-a2'(513 mg) was used for the next reaction without further purification.

Synthesis of compound P-b1. The mixture of **P-a1'** (195 mg, 0.10 mmol), methyl 4iodobenzoate (75.2 mg, 0.29 mmol), AsPh₃ (57.2 mg, 0.19 mmol) and Pd₂(dba)₃ (17.5 mg, 0.02 mmol) in THF/Et₃N (10/10 mL) was stirred at 80°C for 8 h under nitrogen. After cooling to room temperature, the solution was poured into water and extracted with DCM (50 mL × 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/EA (5/1, v/v) used as the eluent to give a green solid of **P-b1** (139 mg, yield 67%). ¹H NMR (400 MHz, CD₂Cl₂, ppm) δ 9.70 (dd, *J* = 27.2, 4.5 Hz, 4H), 8.92 (dd, *J* = 11.5, 4.5 Hz, 4H), 8.08 (d, *J* = 8.2 Hz, 2H), 7.95 (d, *J* = 8.0 Hz, 2H), 7.81 (dd, *J* = 15.6, 7.2 Hz, 4H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.46 – 7.24 (m, 7H), 7.11 (d, *J* = 8.5 Hz, 4H), 6.55 (d, *J* = 2.1 Hz, 1H), 6.40 (dd, *J* = 8.5, 2.2 Hz, 1H), 5.96 (s, 1H), 4.12 (t, *J* = 6.3 Hz, 2H), 4.04 – 3.89 (m, 13H), 3.84 (d, *J* = 6.0 Hz, 1H), 3.21 (dd, *J* = 15.4, 6.2 Hz, 1H), 2.08 – 1.85 (m, 6H), 1.87 – 1.70 (m, 2H), 1.64 (s, 2H), 1.46 (m, 8H), 1.36 (m, 13H), 1.31 – 0.78 (m, 48H), 0.81 – 0.66 (m, 34H), 0.66 – 0.52 (m, 31H), 0.50 – 0.32 (m, 9H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 167.75, 166.43, 159.95, 159.54, 157.10, 152.18, 151.18, 151.01, 149.75, 148.48, 141.88, 141.11, 135.30, 132.06, 131.54, 131.22, 130.15, 129.81, 129.41, 129.01, 128.55, 126.68, 126.02, 122.64, 120.93, 120.04, 118.81, 115.43, 114.07, 108.06, 105.22, 104.58, 102.71, 99.63, 98.62, 97.74, 96.68, 94.58, 91.19, 68.68, 68.50, 67.31, 54.93, 52.13, 40.52, 38.73, 37.85, 32.63, 31.29, 30.36, 30.07, 28.22, 26.08, 25.74, 25.25, 24.27, 23.45, 23.33, 22.15, 17.79, 14.99, 13.01, 10.97. MS (MALDI-TOF, m/z): $[M]^+$ calcd for $C_{143}H_{189}N_5O_8Zn$, 2168.3828; Found, 2168.4202. FT-IR (ATR, cm⁻¹): 2918 (s), 2852 (s), 2191 (w), 1720 (m), 1602 (m), 1578 (m), 1491 (m), 1464 (s), 1384 (m), 1269 (m), 1179 (s), 1130 (m), 1105 (w), 1017 (m), 882 (w), 767 (m), 698 (m), 577 (m), 516 (m). mp 159–160°C.

Synthesis of compound P-b2. The mixture of P-a2 '(284 mg, 0.12 mmol), A2⁹ (185 mg, 0.36 mmol), AsPh₃ (78.8 mg, 0.26 mmol), ^tBu₃P·HBF₄ (8.9 mg, 0.03 mmol) and Pd₂(dba)₃ (21.8 mg, 0.02 mmol) in THF/Et₃N (10/10 mL) was stirred at 80°C for 12 h under nitrogen atmosphere. After cooling to room temperature, the solution was poured into water and extracted with DCM (50 mL \times 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/EA (5/1, v/v) used as the eluent to give a green solid of **P-b2** (164 mg, yield 49%). ¹H NMR (600 MHz, CD₂Cl₂, ppm) δ 9.46 (dd, J = 14.3, 4.4 Hz, 4H), 8.62 (dd, J = 14.0, 4.4 Hz, 4H), 8.17 (s, 1H), 7.99 – 7.85 (m, 2H), 7.70 (s, 1H), 7.63 (d, J = 7.3 Hz, 1H), 7.60 (s, 1H), 7.54 (dd, J = 11.5, 5.7 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.29 (dt, J = 14.1, 5.0 Hz, 2H), 7.19 - 7.10 (m, 4H), 7.10 - 7.01 (m, 3H), 6.85 (t, J = 7.3 Hz, 4H), 6.31(d, J = 2.2 Hz, 1H), 6.16 (dd, J = 8.6, 2.2 Hz, 1H), 5.72 (t, J = 7.9 Hz, 1H), 5.22 (s, 2H), 4.49(s, 2H), 3.94 – 3.80 (m, 4H), 3.81 – 3.73 (m, 3H), 3.68 (dd, *J* = 17.0, 11.0 Hz, 12H), 3.65 – 3.54 (m, 1H), 3.34 (d, J = 11.0 Hz, 3H), 2.99 (d, J = 8.6 Hz, 1H), 1.84 - 1.74 (m, 7H), 1.73 - 1.64(m, 2H), 1.62 – 1.48 (m, 3H), 1.41 (s, 10H), 1.32 – 1.20 (m, 7H), 1.18 – 0.93 (m, 76H), 0.95 – 0.82 (m, 19H), 0.77 (m, 15H), 0.72 – 0.59 (m, 23H), 0.61 – 0.46 (m, 37H), 0.38 (m, 25H), 0.23 (s, 10H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 166.80, 166.06, 159.77, 157.14, 152.93, 151.07, 151.18, 150.15, 148.55, 141.93, 141.15, 140.07, 138.06, 135.35, 132.51, 132.12, 131.58, 130.81, 130.59, 129.98, 129.58, 129.36, 128.87, 128.71, 128.10, 126.72, 126.07, 122.68, 120.97, 120.09, 118.84, 115.45, 114.14, 108.14, 105.24, 104.61, 102.80, 101.56, 99.69, 98.20, 97.80, 92.54, 91.33, 72.36, 71.78, 70.42, 68.69, 68.04, 54.97, 53.44, 52.22, 51.94, 40.55, 37.92, 36.11, 35.48, 34.71, 31.98, 31.65, 30.01, 28.95, 28.72, 27.26, 26.12, 25.79, 25.24, 23.78, 23.16, 22.15, 18.80, 14.68, 13.23, 11.48. MS (MALDI-TOF, m/z): [M]⁺ calcd for C₁₇₉H₂₅₀BrN₅O₁₂Zn, 2804.7581; Found, 2804.4983. FT-IR (ATR, cm⁻¹): 2923 (s), 2852 (s), 2182 (w), 1714 (m), 1606 (m), 1573 (m), 1492 (m), 1468 (s), 1429 (m), 1381 (m), 1295 (m), 1248 (w), 1178 (m), 1099 (m), 999 (m), 883 (w), 797 (m), 715 (m), 583 (m), 440 (m). mp 182–184°C.

Synthesis of compound P-c1. The mixture of P-b2 (82 mg, 0.03 mmol), O-Bpin (54 mg,

0.04 mmol), Sphos (3.2 mg, 0.01 mmol), K₃PO₄ (13.3 mg, 0.06 mmol) and Pd₂(dba)₃ (7.3 mg, 0.01 mmol) in THF (15 mL) was stirred at 80°C for 10 h under nitrogen atmosphere. After cooling to room temperature, the solution was poured into water and extracted with DCM (50 $mL \times 3$) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/EA (5/1, v/v) used as the eluent to give a black solid of **P-c1** (72 mg, yield 63%). ¹H NMR (400 MHz, CD_2Cl_2 , ppm) δ 9.76 (dd, J = 4.4, 2.6 Hz, 4H), 8.91 (dd, J = 11.6, 4.5 Hz, 4H), 8.45 (s, 1H), 8.18 (d, J = 14.4 Hz, 3H), 7.98 (d, J = 7.5 Hz, 1H), 7.91 (d, J = 8.7 Hz, 3H), 7.86 (s, 1H), 7.78 (dd, J = 16.1, 7.7 Hz, 3H), 7.72 – 7.62 (m, 4H), 7.55 – 7.47 (m, 3H), 7.44 (s, 1H), 7.38 (dd, J = 14.2, 6.8 Hz, 3H), 7.36 – 7.33 (m, 5H), 7.30 (dd, J = 13.5, 6.0 Hz, 4H), 7.24 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.5 Hz, 4H), 6.56 (dd, J = 4.1, 2.2 Hz, 2H), 6.39 (ddd, J = 12.5, 12.5)8.6, 2.1 Hz, 2H), 5.97 (t, J = 8.2 Hz, 1H), 5.90 (dd, J = 9.1, 6.7 Hz, 1H), 5.52 (s, 2H), 4.68 (s, 2H), 4.13 (dd, *J* = 12.5, 6.1 Hz, 6H), 4.05 – 3.88 (m, 17H), 3.86 (d, *J* = 9.3 Hz, 2H), 3.29 – 3.20 (m, 1H), 3.14 (d, J = 15.9 Hz, 4H), 2.10 - 1.97 (m, 9H), 1.96 - 1.84 (m, 7H), 1.78 (m, 5H), 1.64(m, 5H), 1.48 (m, 4.6 Hz, 13H), 1.43 – 1.22 (m, 12H), 1.15 (m, 96H), 1.10 – 0.97 (m, 26H), 0.97 – 0.85 (m, 67H), 0.77 (m, 42H), 0.59 (s, 6H), 0.50 – 0.38 (m, 9H). ¹³C NMR (151 MHz, CDCl₃, ppm) & 165.70, 164.82, 158.91, 158.79, 158.12, 157.89, 156.02, 153.18, 151.66, 150.58, 149.41, 147.44, 141.01, 140.55, 139.78, 139.46, 138.92, 137.13, 134.72, 133.28, 131.40, 131.12, 130.50, 129.59, 128.59, 128.54, 127.69, 127.01, 125.56, 125.23, 124.24, 123.61, 122.11, 121.67, 120.51, 119.99, 119.01, 117.65, 114.41, 112.83, 107.16, 104.21, 103.50, 102.53, 101.76, 100.64, 98.59, 97.13, 96.65, 91.51, 90.34, 70.71, 68.98, 67.64, 67.49, 66.11, 53.88, 53.22, 52.36, 51.11, 50.55, 40.00, 38.80, 36.97, 31.28, 30.03, 29.42 27.25, 25.68, 24.67, 24.22, 23.65, 22.69, 22.21, 20.88, 15.10, 12.27. MS (MALDI-TOF, m/z): [M]⁺ calcd for C₂₅₇H₃₄₈N₈O₁₄S₃Zn, 3930.5219; Found, 3930.5105. FT-IR (ATR, cm⁻¹): 2914 (s), 2862 (s), 2198 (w), 1727 (m), 1661 (m), 1635 (m), 1608 (m), 1499 (m), 1486 (s), 1381 (m), 1300 (m), 1269 (m), 1209 (w), 1103 (m), 1000 (m), 798 (w), 737 (m), 508 (m), 432 (m). mp > 300°C.

Synthesis of compound P-c2. The mixture of P-b2 (95 mg, 0.03 mmol), O-alkyne (50.9 mg, 0.04 mmol), AsPh₃ (30 mg, 0.10 mmol), ¹Bu₃P·HBF₄ (3.8 mg, 0.01 mmol) and Pd₂(dba)₃ (8.2 mg, 0.01 mmol) in THF/Et₃N (10/10 mL) was stirred at 80°C for 10 h under nitrogen atmosphere. After cooling to room temperature, the solution was poured into water and extracted with DCM (50 mL × 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/EA (5/1, v/v) used as the eluent to give a black solid of **P-c2** (54.9 mg, yield 41%). ¹H NMR (600 MHz, CD₂Cl₂, ppm) δ 9.66 (dd, *J* = 9.1, 4.4 Hz, 4H), 8.80 (dd, *J* = 18.2, 4.4 Hz, 4H), 8.33 (s, 1H), 8.07 (s, 2H), 8.01 (s, 1H), 7.83 (d, *J* = 7.5

Hz, 4H), 7.74 (s, 1H), 7.67 (t, J = 8.5 Hz, 2H), 7.61 (d, J = 7.5 Hz, 1H), 7.59 – 7.53 (m, 5H), 7.43 (d, J = 8.1 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.30 – 7.23 (m, 7H), 7.21 – 7.16 (m, 6H), 7.16 - 7.11 (m, 2H), 6.98 (d, J = 8.6 Hz, 4H), 6.47 - 6.40 (m, 2H), 6.32 - 6.23 (m, 2H), 5.85 (s, 1H), 5.82 - 5.73 (m, 1H), 5.41 (s, 2H), 4.79 (d, J = 10.0 Hz, 2H), 4.10 - 4.05 (m, 2H), 4.01(dd, J = 13.5, 6.5 Hz, 4H), 3.99 – 3.95 (m, 2H), 3.88 (s, 3H), 3.87 – 3.79 (m, 12H), 3.78 – 3.69 (m, 2H), 3.20 (d, J = 13.4 Hz, 3H), 3.13 (s, 1H), 3.04 (dd, J = 15.5, 5.7 Hz, 1H), 1.95 - 1.76 (m, 17H), 1.72 – 1.62 (m, 5H), 1.59 – 1.47 (m, 4H), 1.43 – 1.31 (m, 14H), 1.30 – 1.20 (m, 98H), 1.17 – 1.02 (m, 30H), 1.01 – 0.85 (m, 74H), 0.84 – 0.71 (m, 13H), 0.67 – 0.57 (m, 22H), 0.56 - 0.41 (m, 9H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 166.75, 165.80, 159.85, 157.86, 157.05, 154.16, 152.65, 152.22, 151.15, 151.15, 149.77, 148.51, 142.14, 141.28, 140.54, 139.37, 137.39, 135.16, 132.74, 132.21, 132.00, 131.55, 131.17, 130.73, 130.53, 130.18, 129.79, 129.09, 128.67, 128.07, 126.92, 126.67, 126.40, 126.12, 125.72, 125.51, 124.91, 122.69, 122.17, 121.38, 121.00, 120.04, 118.86, 118.37, 115.49, 114.12, 113.61, 108.18, 105.27, 104.54, 102.76, 101.50, 99.62, 98.32, 97.74, 92.60, 91.86, 91.30, 71.80, 71.21, 70.50, 68.68, 68.44, 67.69, 62.03, 54.91, 54.16, 52.15, 51.66, 41.11, 40.18, 37.97, 32.37, 31.48, 30.01, 28.95, 28.66, 26.05, 25.66, 25.25, 24.57, 23.94, 23.33, 22.65, 14.71, 13.48. MS (MALDI-TOF, m/z): [M]⁺ calcd for C₂₅₉H₃₄₈N₈O₁₄S₃Zn, 3954.5219; Found, 3954.5754. FT-IR (ATR, cm⁻¹): 3358 (m), 2922 (s), 2852 (m), 2187 (w), 1724 (m), 1606 (m), 1493 (m), 1466 (s), 1378 (m), 1295 (m), 1260 (m), 1205 (w), 1101 (s), 996 (m), 967 (m), 812 (m), 794 (m), 738 (m), 509 (m), 435 (m). mp > 300° C.

Synthesis of compound P-c3. The mixture of **P-b3**¹⁰ (121 mg, 0.04 mmol), **O-alkyne** (66 mg, 0.05 mmol), AsPh₃ (25.5 mg, 0.08 mmol), 'Bu₃P·HBF₄ (3.3 mg, 0.01 mmol) and Pd₂(dba)₃ (12.5 mg, 0.01 mmol) in THF/Et₃N (10/10 mL) was stirred at 80°C for 10 h under nitrogen atmosphere. After cooling to room temperature, the solution was poured into water and extracted with DCM (50 mL × 3) and the combined organic phase was dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography with PE/EA (5/1, v/v) used as the eluent to give a black solid of **P-c3** (93 mg, yield 55%). ¹H NMR (400 MHz, CD₂Cl₂, ppm) δ 9.58 (dd, *J* = 30.4, 4.5 Hz, 4H), 8.74 (dd, *J* = 13.0, 4.5 Hz, 4H), 8.28 (s, 1H), 8.03 (s, 2H), 7.94 (s, 1H), 7.82 – 7.70 (m, 5H), 7.66 – 7.54 (m, 4H), 7.49 (dd, *J* = 7.8, 4.3 Hz, 2H), 7.40 (d, *J* = 8.5 Hz, 4H), 7.30 (t, *J* = 8.1 Hz, 3H), 7.25 – 7.14 (m, 6H) 7.12 – 7.04 (m, 5H), 7.00 – 6.89 (m, 5H), 6.58 – 6.48 (m, 2H), 6.46 – 6.32 (m, 4H), 6.31 – 6.14 (m, 2H), 5.73 (dd, *J* = 9.3, 6.6 Hz, 1H), 5.35 (s, 2H), 4.72 (s, 2H), 4.00 (d, *J* = 5.1 Hz, 2H), 3.09 – 3.89(m, 9H), 3.88 – 3.83(m, 9H), 3.82 – 3.74 (dd, *J* = 14.9, 11.1 Hz, 11H), 3.74 – 3.63 (m, 2H), 3.08 (d, *J* = 7.3 Hz, 3H), 2.99 (dd, *J* = 24.6, 8.4 Hz, 1H), 1.92 – 1.54 (m, 23H), 1.48 – 1.28 (m, 43H), 1.28 – 0.95 (m, 131H), 0.95 – 0.63 (m, 105H), 0.56

(m, 12H), 0.39 (m, 22H), 0.36 – 0.18 (m, 10H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 165.76, 164.87, 159.46, 159.17, 158.89, 158.52, 156.84, 155.97, 153.14, 151.62, 150.96, 150.02, 149.84, 148.69, 147.48, 143.31, 141.06, 140.26, 139.17, 138.66, 137.83, 136.37, 133.97, 132.12, 131.73, 130.91, 130.16, 129.80, 129.35, 129.32, 128.77, 128.06, 127.09 (s), 126.90, 126.37, 125.62, 124.85, 124.49, 123.89, 121.66, 121.18, 120.34, 119.90, 119.04, 117.66, 116.94, 114.56, 112.57, 107.25, 104.80, 103.92, 103.50, 100.43, 99.35, 98.57, 97.52, 94.50, 92.00, 90.82, 70.77, 70.16, 69.48, 67.74, 66.65, 53.88, 53.14, 52.38, 51.73, 51.34, 50.68, 39.45, 36.94, 31.35 30.31, 28.41, 27.64, 26.19, 25.27, 24.43, 24.22, 23.54, 22.68, 21.61, 13.05. MS (MALDI-TOF, m/z): [M]⁺ calcd for C₂₆₂H₃₄₈N₈O₁₆S₄Zn, 4054.4838; Found, 4054.5632. FT-IR (ATR, cm⁻¹): 3359 (m), 2923 (s), 2852 (s), 1660 (m), 1606 (m), 1467 (m), 1295 (m), 1263 (s), 1180 (w), 1100 (s), 1000 (m), 897 (w), 737 (s), 705 (m), 428 (m). mp > 300°C.

Synthesis of compound XW93–XW96. The intermediates P-b1 and P-c1–P-c3 were hydrolyzed by LiOH·H₂O under nitrogen to give XW93–XW96, respectively (refer to experimental section of the main text for more details).

2 Absorption and Emission spectra

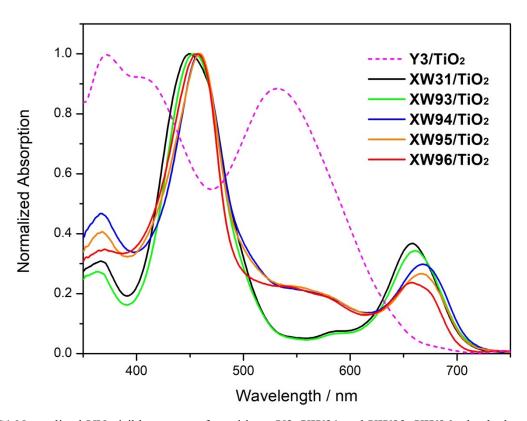
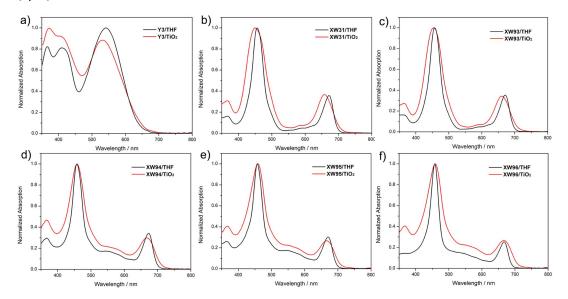



Figure S1 Normalized UV-visible spectra of sensitizers Y3, XW31 and XW93–XW96 adsorbed on TiO₂ films (2µm).

Figure S2 Normalized UV-visible spectra of sensitizers **Y3**, **XW31** and **XW93–XW96** in THF and on the TiO₂ films (2µm).

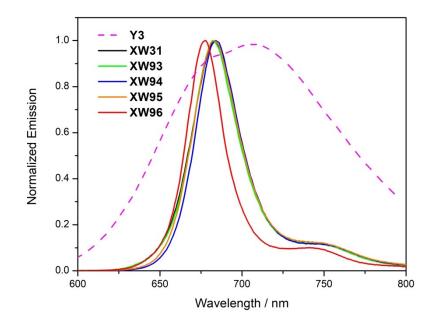
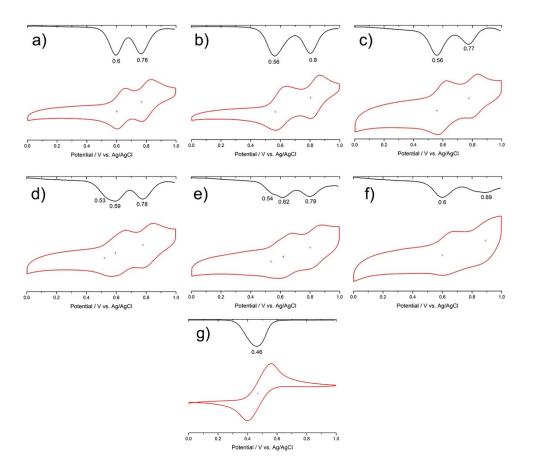



Figure S3 Fluorescence emission spectra of the dyes Y3, XW31 and XW93–XW96 in THF.

3 Electrochemical behavior

Figure S4 Cyclic voltammetry (CV) (red) and differential pulse voltammogram (DPV) (black) curves of (a) **Y3**, (b) **XW31**, (c) **XW93**, (d) **XW94**, (e) **XW95**, (f) **XW96** and g) ferrocene.

4 Theoretical calculation

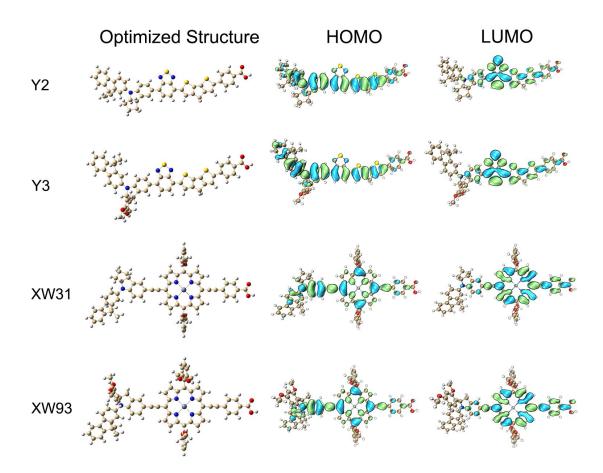
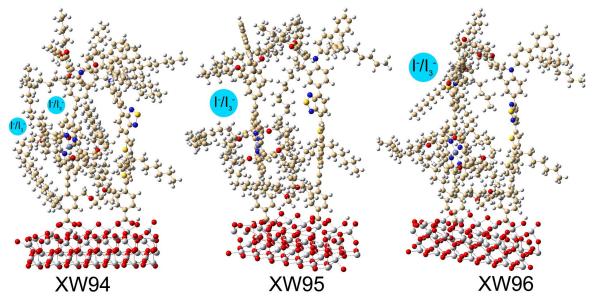



Figure S5 Optimized structures and frontier orbitals of the dyes Y2, Y3, XW31 and XW93. For saving the computation time, the alkoxy chains in the molecules have been simplified to methoxy groups.

Figure S6 The optimized structures of the DCC dyes **XW94–XW96** adsorbed on TiO₂ films calculated using Gaussian 16 program package.

Y2	Y3	XW31	XW93	
-1.70	-1.70	-1.70	-1.70	
-2.48	-2.47	-2.18	-2.19	
-5.39	-5.30	-5.21	-5.21	
-5.89	-5.79	-5.75	-5.75	
2.91	2.83	3.03	3.02	
	-1.70 -2.48 -5.39 -5.89	-1.70-1.70-2.48-2.47-5.39-5.30-5.89-5.79	-1.70-1.70-1.70-2.48-2.47-2.18-5.39-5.30-5.21-5.89-5.79-5.75	-1.70-1.70-1.70-2.48-2.47-2.18-5.39-5.30-5.21-5.89-5.79-5.75

Table S1 Energy levels of frontier molecular orbitals for Y2, Y3, XW31 and XW93.

Dye	Electrolyte	$eV_{\rm OC}({\rm mV})$	$J_{\rm SC}$ (mA·cm ⁻²)) $(\text{mA} \cdot \text{cm}^{-2})$	$^{c}J_{\rm error}$ (%)	FF (%)	PCE (%)	Dye loading (10 ⁻⁷ mol cm ⁻²)
¥3	I ₃ ⁻ /I ⁻	747 ± 5	19.24 ± 0.25	16.66	13.4	70.63 ± 0.44	10.15 ± 0.21	1.77
XW31	I_3^{-}/I^{-}	718 ± 4	20.99 ± 0.29	17.68	15.8	69.58 ± 0.58	10.49 ± 0.26	1.28
XW93	I_3^{-}/I^{-}	734 ± 5	20.63 ± 0.34	17.23	16.5	70.88 ± 0.39	10.73 ± 0.19	1.19
XW94	I_3^{-}/I^{-}	750 ± 5	22.02 ± 0.04	18.86	14.3	71.72 ± 0.57	11.84 ± 0.04	1.04
XW95	I_3^{-}/I^{-}	759 ± 4	22.06 ± 0.11	19.13	13.3	72.04 ± 0.52	12.06 ± 0.14	0.99
XW96	I_{3}^{-}/I^{-}	782 ± 2	21.97 ± 0.18	18.60	15.3	72.52 ± 0.42	12.46 ± 0.13	0.93
XW93	$Co^{3+/2+}$	849 ± 1	14.83 ± 0.12	13.49	9.0	73.95 ± 0.29	9.31 ± 0.15	0.97

Table S3 Photovoltaic Parameters of the DSSCs under AM1.5 Illumination ^a

5 Photovoltaic properties

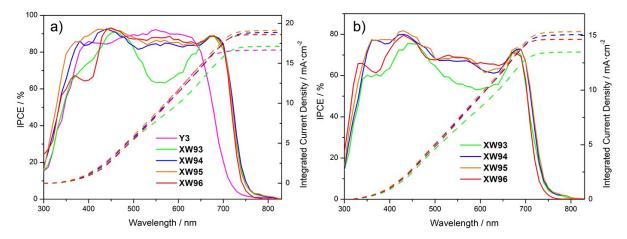

Dye	Electrolyte	CDCA		$J_{ m SC}$	FF (0/)		Dye loading
		(mM)	$V_{\rm OC}({\rm mV})$	$(mA cm^{-2})$	FF (%)	PCE (%)	$(10^{-7} \text{ mol cm}^{-2})$
XW94	I ₃ ⁻ /I ⁻	0.5	760 ± 3	21.86 ± 0.16	71.69 ± 0.42	11.91 ± 0.22	1.07
	I_{3}^{-}/I^{-}	1.0	762 ± 2	22.08 ± 0.19	72.72 ± 0.31	12.24 ± 0.09	0.90
	I_{3}^{-}/I^{-}	1.5	765 ± 2	21.62 ± 0.27	72.75 ± 0.30	12.03 ± 0.18	0.78
	Co ^{3+/2+}	0.5	867 ± 4	16.46 ± 0.18	73.80 ± 0.13	10.53 ± 0.26	0.85
	Co ^{3+/2+}	1.0	872 ± 2	16.50 ± 0.22	73.53 ± 0.21	10.58 ± 0.34	0.78
	Co ^{3+/2+}	1.5	870 ± 5	16.29 ± 0.35	73.72 ± 0.17	10.45 ± 0.16	0.71
XW95	I ₃ ⁻ /I ⁻	0.5	759 ± 2	21.81 ± 0.31	71.85 ± 0.45	11.89 ± 0.19	0.93
	I_{3}^{-}/I^{-}	1.0	768 ± 2	22.13 ± 0.14	71.58 ± 0.56	12.17 ± 0.17	0.87
	I_{3}^{-}/I^{-}	1.5	770 ± 1	21.76 ± 0.22	71.75 ± 0.38	12.02 ± 0.21	0.83
	Co ^{3+/2+}	0.5	872 ± 3	16.72 ± 0.09	73.86 ± 0.29	10.77 ± 0.09	0.92
	Co ^{3+/2+}	1.0	887 ± 1	16.98 ± 0.17	73.22 ± 0.23	11.03 ± 0.15	0.73
	Co ^{3+/2+}	1.5	883 ± 4	16.33 ± 0.15	73.29 ± 0.35	10.57 ± 0.17	0.69
XW96	I ₃ ⁻ /I ⁻	0.5	780 ± 2	21.94 ± 0.25	71.77 ± 0.28	12.28 ± 0.21	0.90
	I_{3}^{-}/I^{-}	1.0	784 ± 1	21.79 ± 0.27	71.92 ± 0.49	12.29 ± 0.16	0.78
	I_{3}^{-}/I^{-}	1.5	780 ± 1	21.63 ± 0.19	71.66 ± 0.35	12.09 ± 0.25	0.72
	Co ^{3+/2+}	0.5	878 ± 2	16.04 ± 0.20	72.82 ± 0.35	10.26 ± 0.27	0.72
	Co ^{3+/2+}	1.0	880 ± 5	16.48 ± 0.26	$\textbf{72.44} \pm 0.46$	10.51 ± 0.33	0.66
	Co ^{3+/2+}	1.5	883 ± 3	15.89 ± 0.16	73.05 ± 0.30	10.25 ± 0.12	0.60

 Table S2 Photovoltaic parameters of coadsorbed DSSCs based on XW94–XW96 and CDCA.

^{*a*} The data were collected from three parallel cells (average values and errors). The TiO_2 electrode was dipped in a mixed dye solution with coadsorbent CDCA in a mixture of chloroform and ethanol (3/2, v/v).

XW94 Co ^{3+/2+}	859 ± 3	16.14 ± 0.36	15.08	6.6	$74.42 \pm 0.14 \ 10.32 \pm 0.19$	0.83
XW95 Co ^{3+/2+}	867 ± 2	16.37 ± 0.32	15.36	6.2	$73.69 \pm 0.31 \ 10.46 \pm 0.17$	0.87
XW96 Co ^{3+/2+}	878 ± 3	15.98 ± 0.30	14.66	8.3	$72.17 \pm 0.47 \ 10.13 \pm 0.26$	0.78

^{*a*} The data were collected from three parallel cells (average values and errors). ^{*b*} The J^{IPCE} values were obtained by integrating the IPCE spectra. ^{*c*} The deviations between J_{SC} and J^{IPCE} .

Figure S7 IPCE spectra and integral J_{SC} curves for the DSSCs based on $I_3^{-}/I^{-}(a)$ and $Co^{3+/2+}(b)$ electrolytes, respectively.

Electrochemical impedance spectroscopy 6

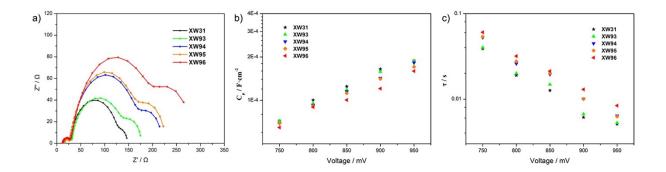


Figure S8 (a) Complex-plane plots at the bias voltage of -0.85 V, (b) plots of chemical capacitances versus bias voltages, and (c) electron lifetimes versus bias voltages for the DSSCs using the Co^{3+/2+} electrolyte measured in the dark.

Table S4 Fitted EIS parameters for the DSSCs based on I_3 / I_1 and $Co^{51/21}$ electrolytes at the bias potentials							
of -0.75 V and -0.85 V, respectively. ^a							
Dyes	Electrolytes	$C_{\mu}(\mathrm{mF~cm^{-2}})$	$R_{\rm rec} (\Omega \ {\rm cm}^2)$	$R_{\rm tr}(\Omega~{ m cm}^2)$	τ (s)	$\eta_{\rm col}{}^{\rm b}(\%)$	
Y3	I_{3}^{-}/I^{-}	0.403	112.1	11.8	0.045	90.5	
XW31	I_{3}^{-}/I^{-}	0.455	79.5	10.2	0.036	88.6	
XW93	I_{3}^{-}/I^{-}	0.443	98.6	10.0	0.044	90.8	
XW94	I_3^{-}/I^{-}	0.351	146.5	11.9	0.051	92.5	
XW95	I_3^{-}/I^{-}	0.350	160.3	12.5	0.056	92.8	
XW96	I_3^{-}/I^{-}	0.302	200.5	12.0	0.061	94.4	
XW31	Co ^{3+/2+}	0.125	105.2	10.9	0.013	90.6	
XW93	Co ^{3+/2+}	0.119	121.9	11.2	0.015	91.6	
XW94	Co ^{3+/2+}	0.115	152.9	12.7	0.018	92.3	
XW95	Co ^{3+/2+}	0.112	156.4	10.6	0.018	93.7	

Table S4 Fitted FIS parameters for the DSSCs based on I_0^{-/I^-} and $C_0^{3+/2+}$ electrolytes at the bias potentials

a) R_{rec} : Charge recombination resistance, R_{tr} : transport resistance, η_{col} : charge collection efficiency; b) $\eta_{\text{col}} = (1 + R_{\text{tr}} / R_{\text{rec}})^{-1}$.

193.5

10.2

0.020

95.0

XW96

Co^{3+/2+}

0.101

7 Characterization spectra for the compounds

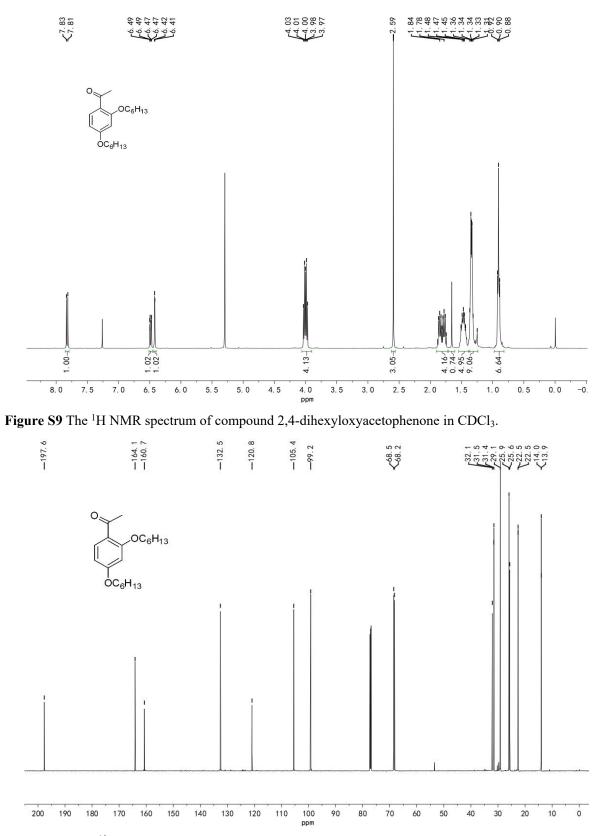


Figure S10 The ¹³C NMR spectrum of compound 2,4-dihexyloxyacetophenone in CDCl₃.

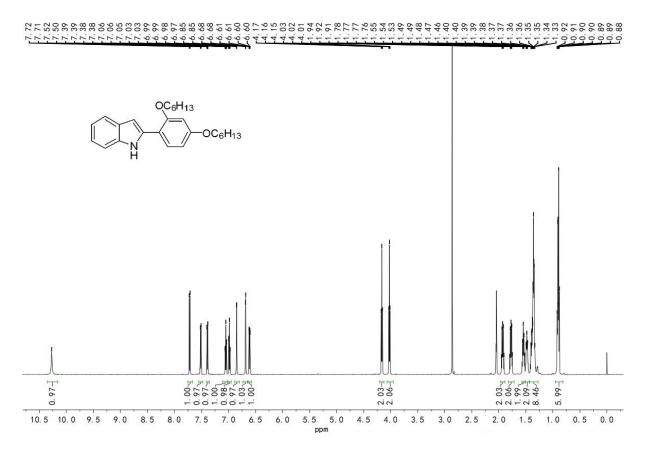


Figure S11 The ¹H NMR spectrum of compound D_4 -a in acetone- d_6 .

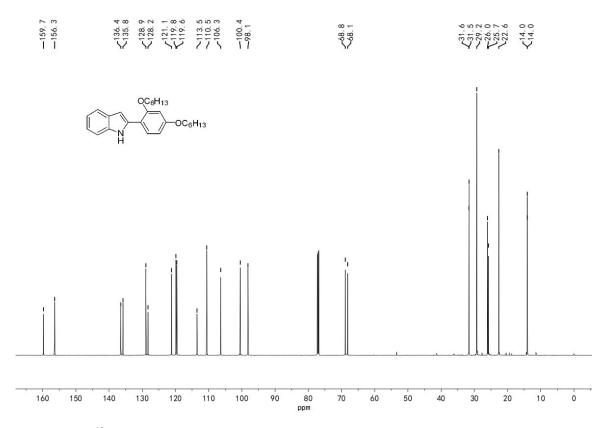


Figure S12 The ¹³C NMR spectrum of compound D₄-a in CDCl₃.

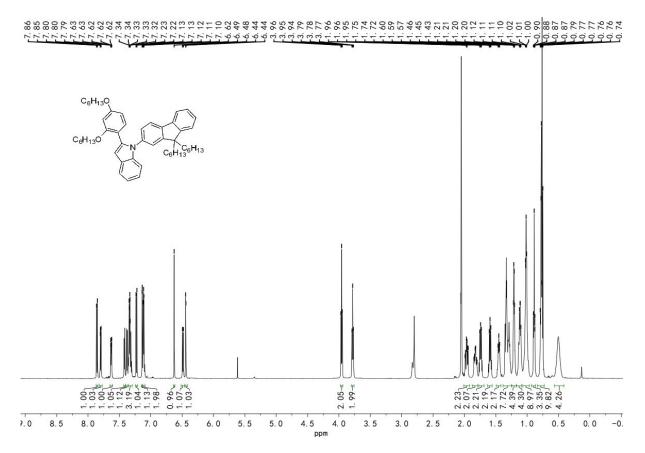


Figure S13 The ¹H NMR spectrum of compound D_4 -b in acetone- d_6 .

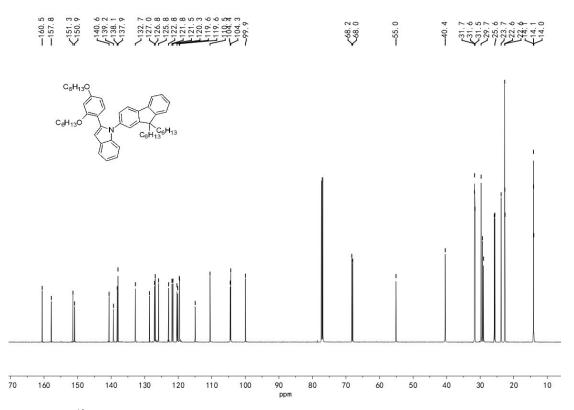


Figure S14 The ¹³C NMR spectrum of compound D₄-b in CDCl₃.

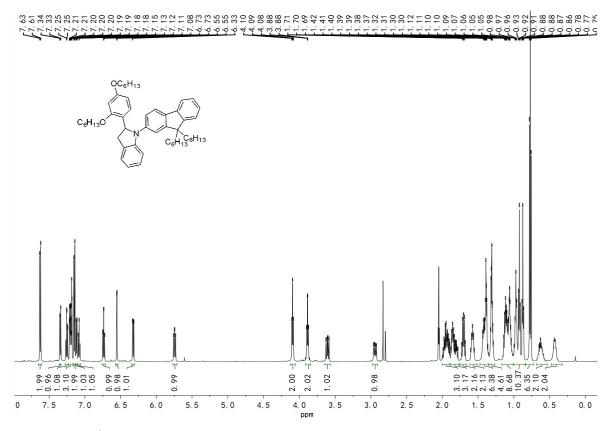


Figure S15 The ¹H NMR spectrum of compound D_4 -c in acetone- d_6 .

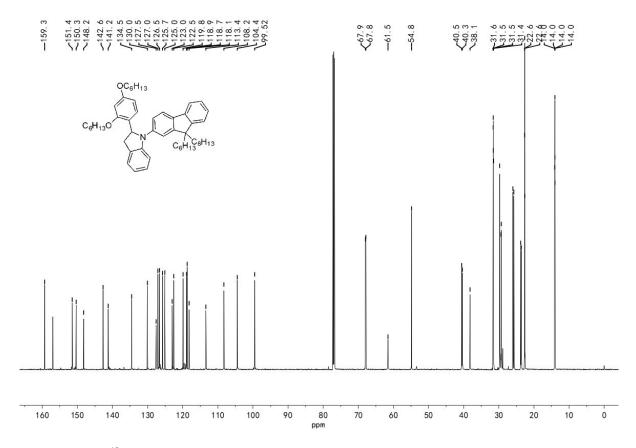


Figure S16 The ¹³C NMR spectrum of compound D₄-c in CDCl₃.

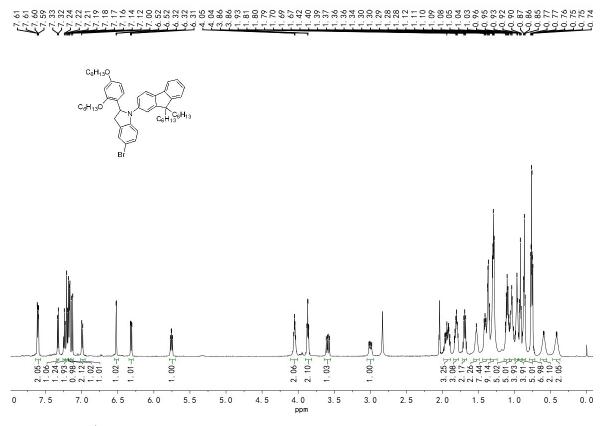


Figure S17 The ¹H NMR spectrum of compound D_4 -Br in acetone- d_6 .

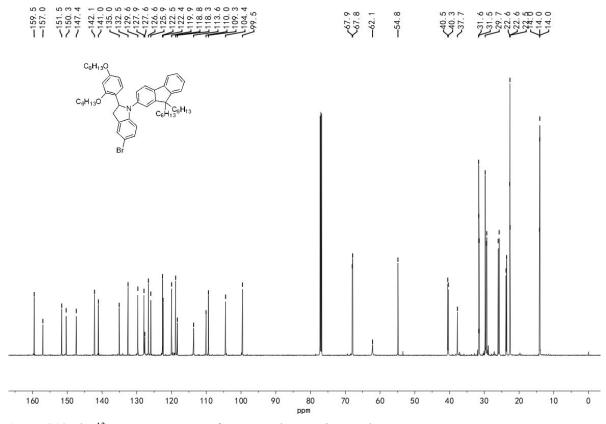


Figure S18 The ¹³C NMR spectrum of compound D₄-Br in CDCl₃.

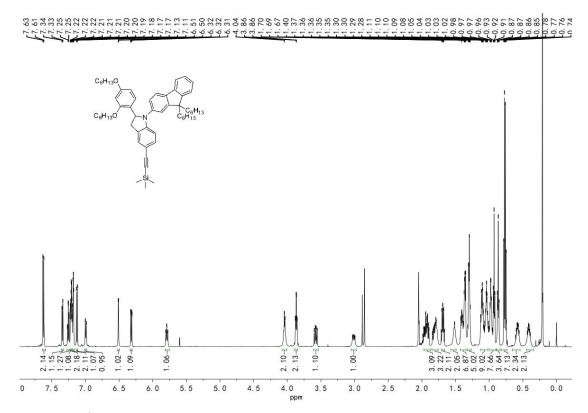


Figure S19 The ¹H NMR spectrum of compound D_4 -d in acetone- d_6 .

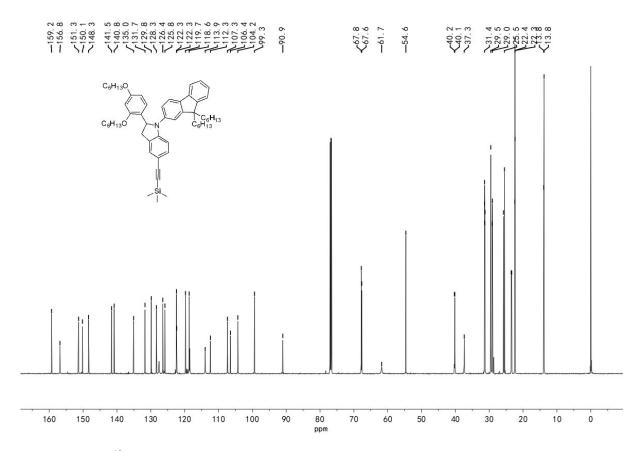


Figure S20 The ¹³C NMR spectrum of compound D₄-d in CDCl₃.

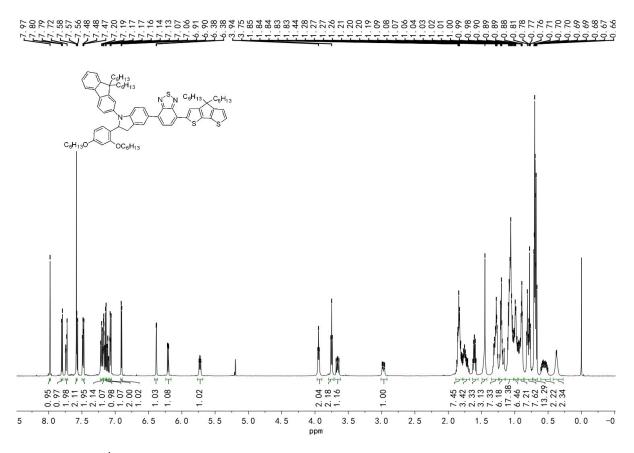


Figure S21 The ¹H NMR spectrum of compound **O-a** in CD₂Cl₂.

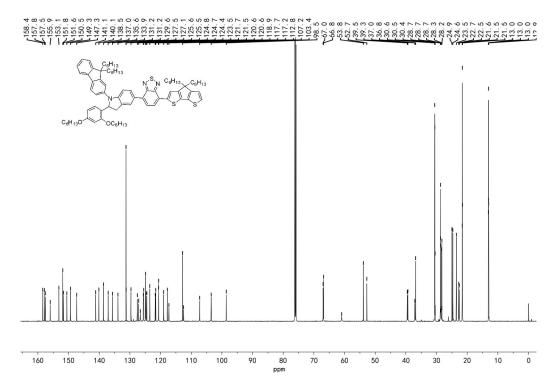


Figure S22 The ¹³C NMR spectrum of compound O-a in CDCl₃.

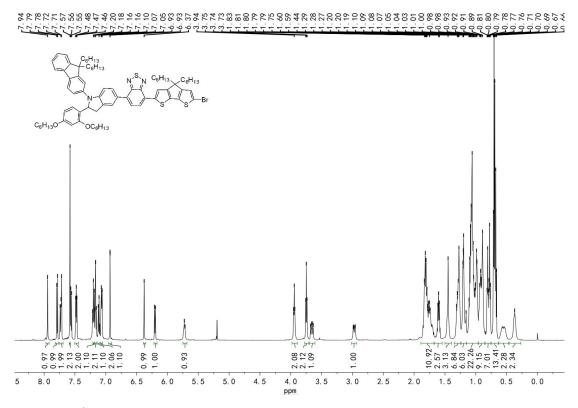


Figure S23 The ¹H NMR spectrum of compound O-Br in CD₂Cl₂.

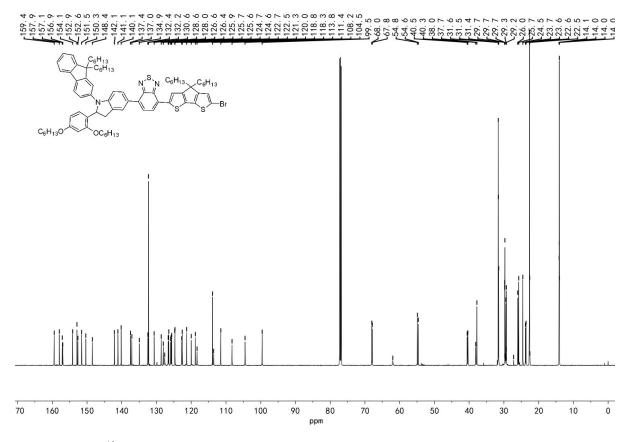


Figure S24 The ¹³C NMR spectrum of compound O-Br in CDCl₃.

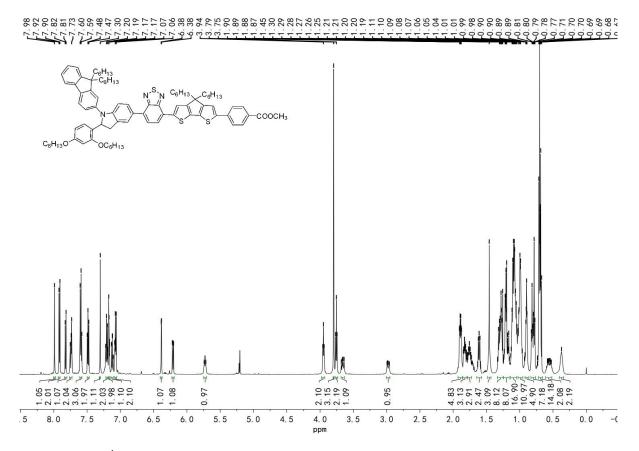


Figure S25 The ¹H NMR spectrum of compound O-b in CD₂Cl₂.

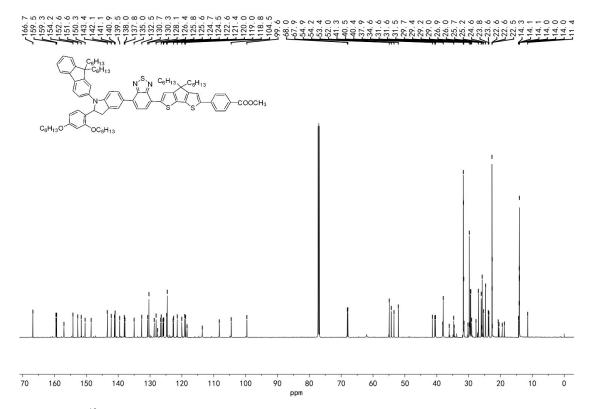


Figure S26 The ¹³C NMR spectrum of compound O-b in CDCl₃.

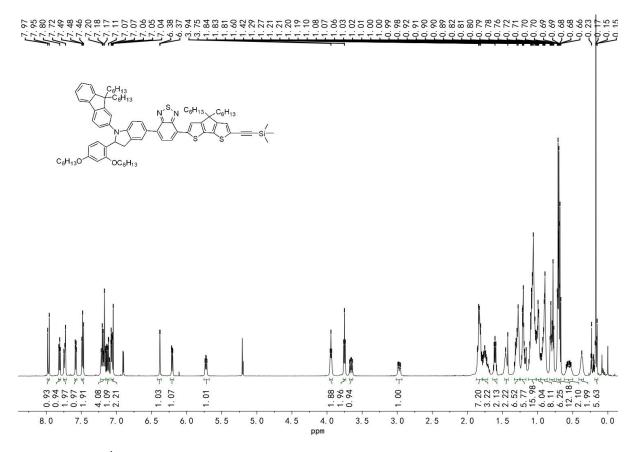


Figure S27 The ¹H NMR spectrum of compound O-c in CD₂Cl₂.

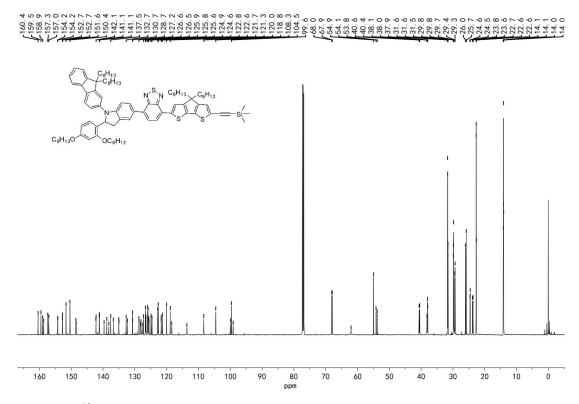


Figure S28 The ¹³C NMR spectrum of compound O-c in CDCl₃.

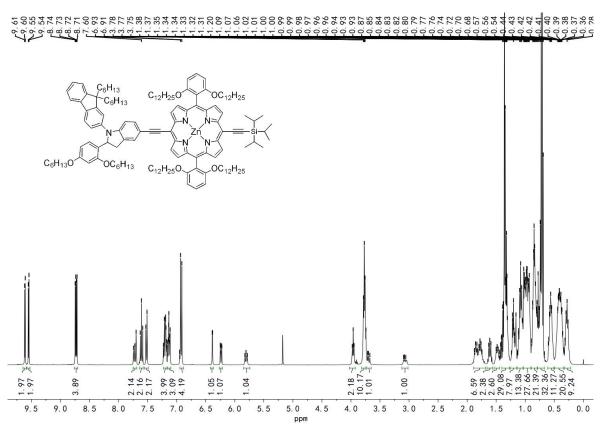


Figure S29 The ¹H NMR spectrum of compound P-a1 in CD₂Cl₂.

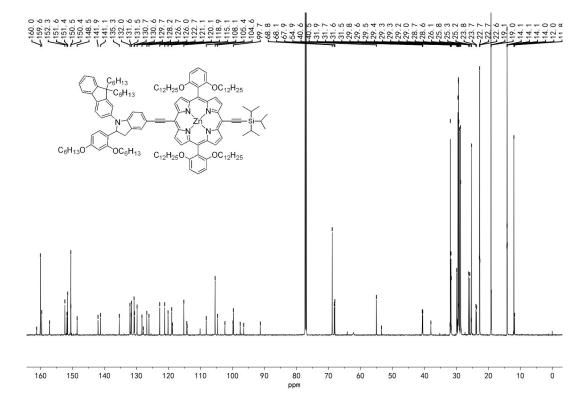


Figure S30 The ¹³C NMR spectrum of compound P-a1 in CDCl₃.

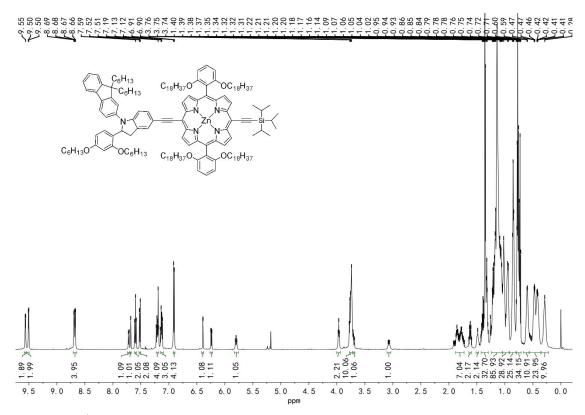


Figure S31 The ¹H NMR spectrum of compound P-a2 in CD_2Cl_2 .

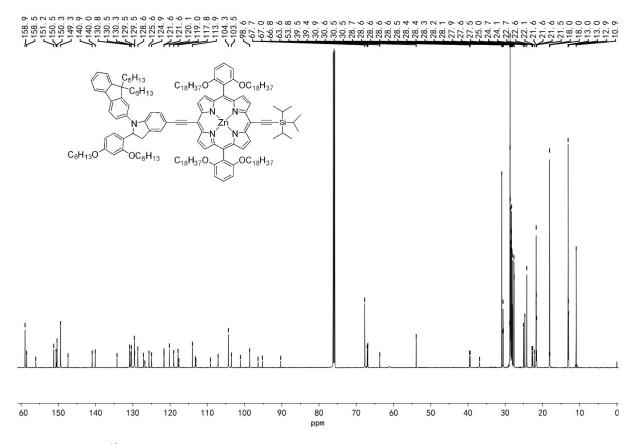


Figure S32 The ¹³C NMR spectrum of compound P-a2 in CDCl₃.

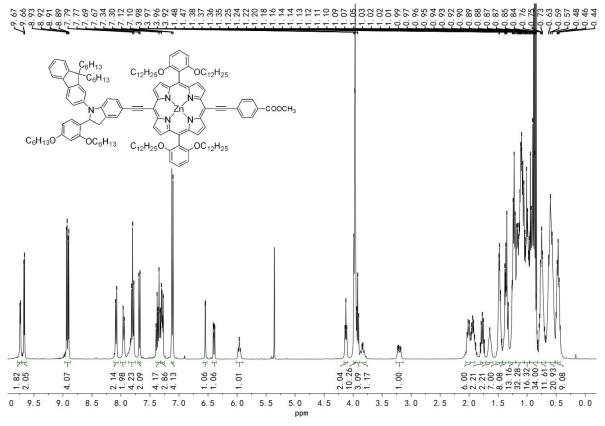


Figure S33 The ¹H NMR spectrum of compound P-b1 in CD₂Cl₂.

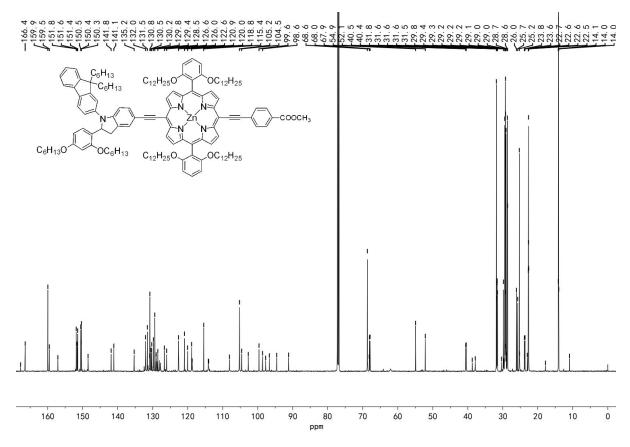


Figure S34 The ¹³C NMR spectrum of compound P-b1 in CDCl₃.

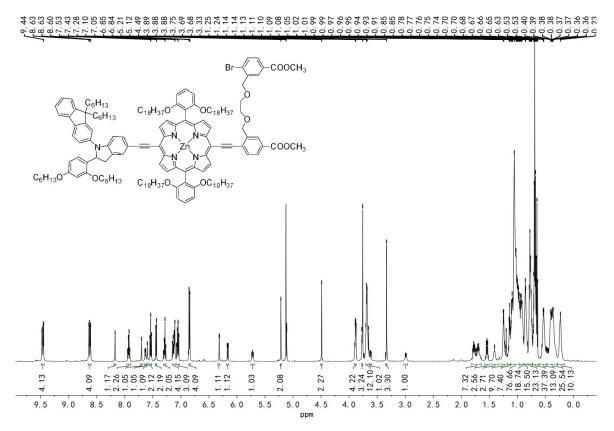


Figure S35 The ¹H NMR spectrum of compound P-b2 in CD₂Cl₂.

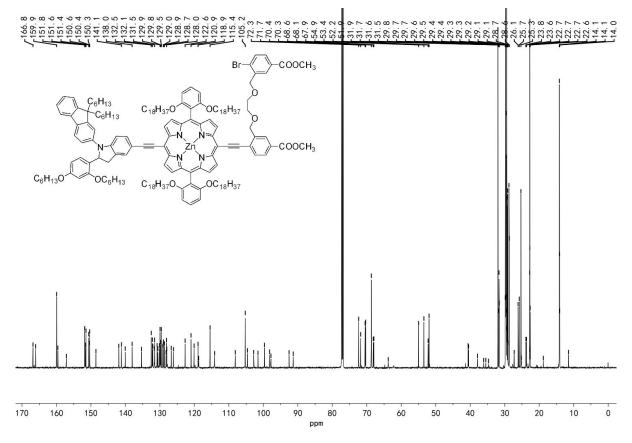


Figure S36 The ¹³C NMR spectrum of compound P-b2 in CDCl₃.

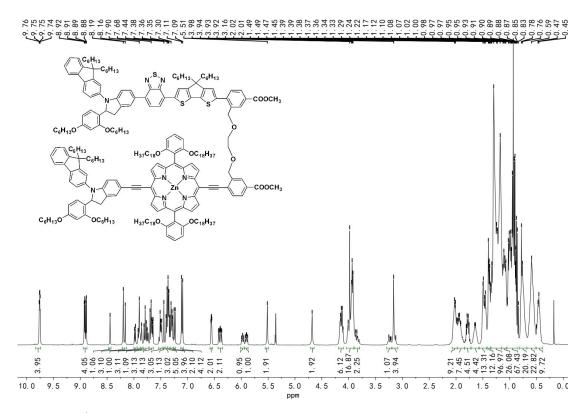


Figure S37 The ¹H NMR spectrum of compound P-c1 in CD₂Cl₂.

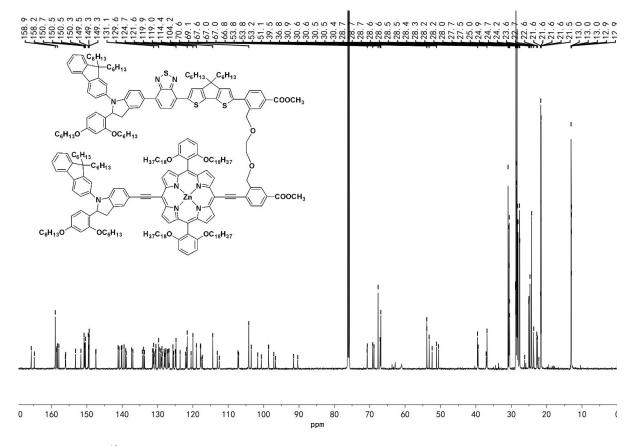


Figure S38 The ¹³C NMR spectrum of compound P-c1 in CDCl₃.

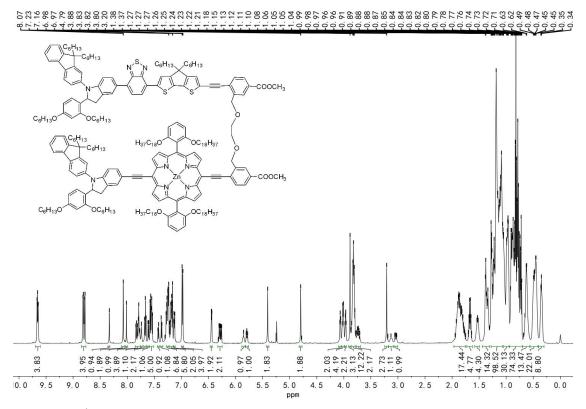


Figure S39 The ¹H NMR spectrum of compound P-c2 in CD_2Cl_2 .

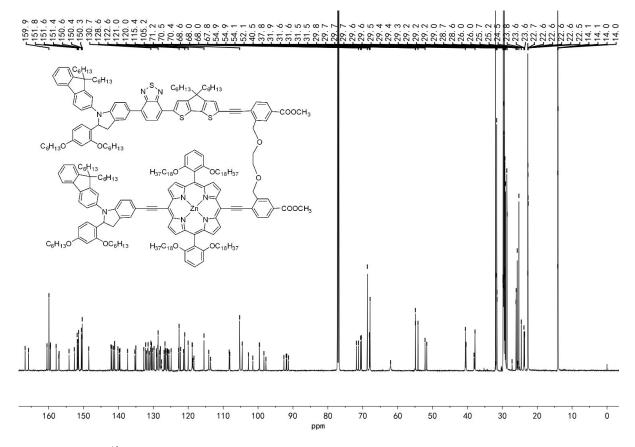


Figure S40 The ¹³C NMR spectrum of compound P-c2 in CDCl₃.

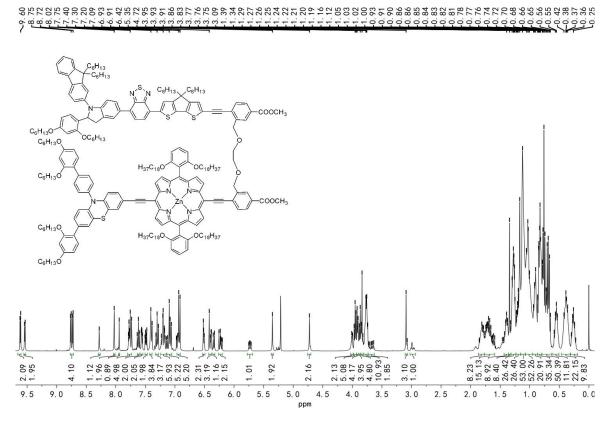


Figure S41 The ¹H NMR spectrum of compound P-c3 in CD₂Cl₂.

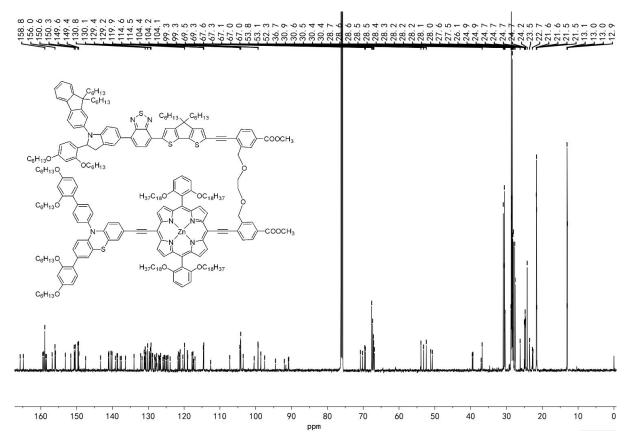


Figure S42 The ¹³C NMR spectrum of compound P-c3 in CDCl₃.

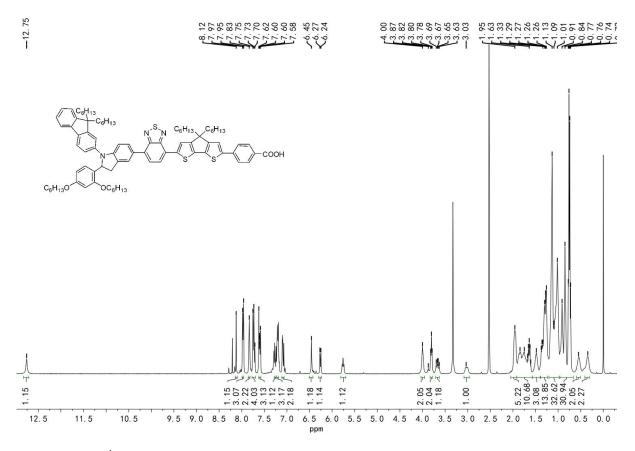


Figure S43 The ¹H NMR spectrum of Y3 in CDCl₃/DMSO- d_6 (1/2, v/v).

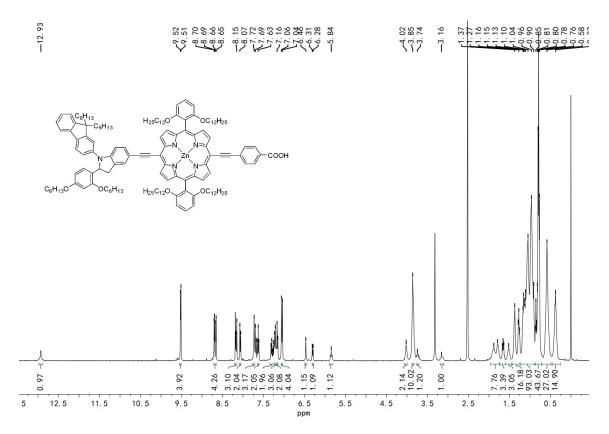


Figure S44 The ¹H NMR spectrum of XW93 in CDCl₃/DMSO- d_6 (1/2, v/v).

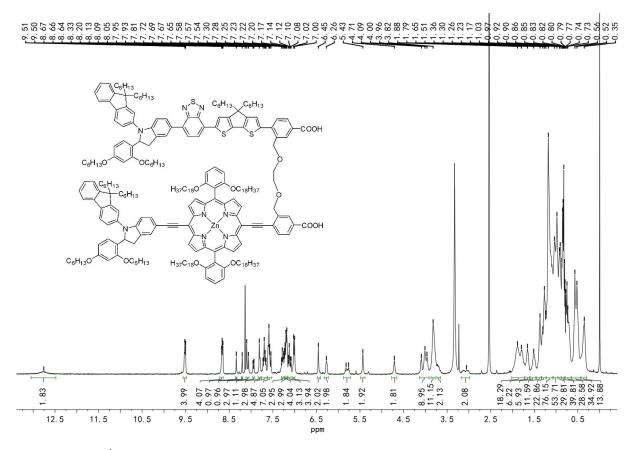


Figure S45 The ¹H NMR spectrum of XW94 in CDCl₃/DMSO- d_6 (1/2, v/v).

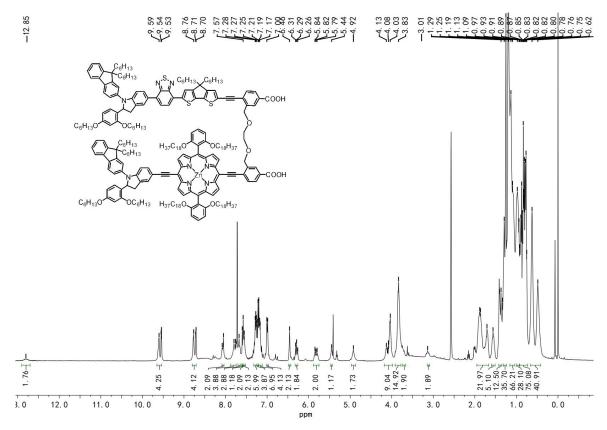


Figure S46 The ¹H NMR spectrum of XW95 in CDCl₃/DMSO- d_6 (1/2, v/v).

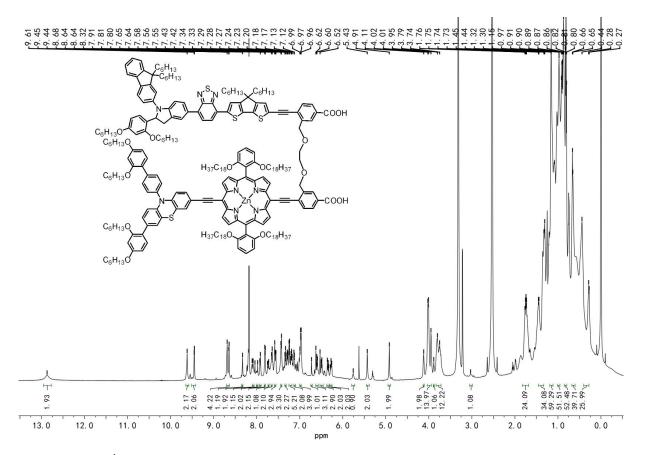


Figure S47 The ¹H NMR spectrum of XW96 in CDCl₃/DMSO- d_6 (1/2, v/v).

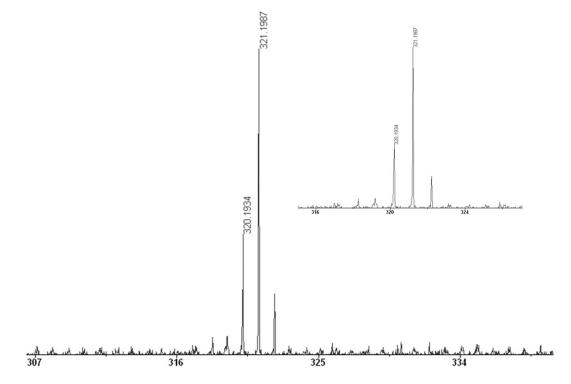


Figure S48 The MALDI-TOF MS of compound 2,4-dihexyloxyacetophenone.

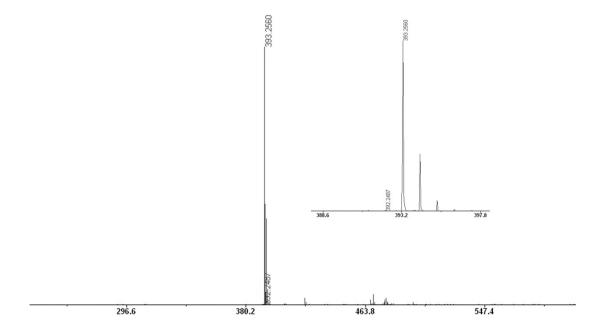


Figure S49 The MALDI-TOF MS of compound D₄-a.

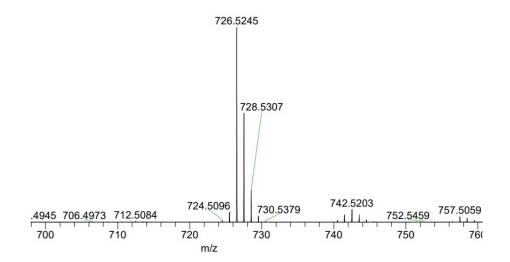


Figure S50 The HRMS of compound D_4 -b.

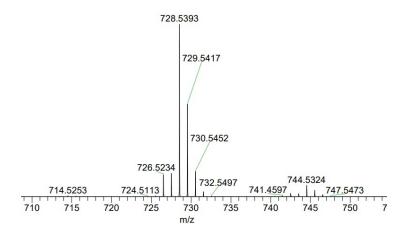


Figure S51 The HRMS of compound D₄-c.

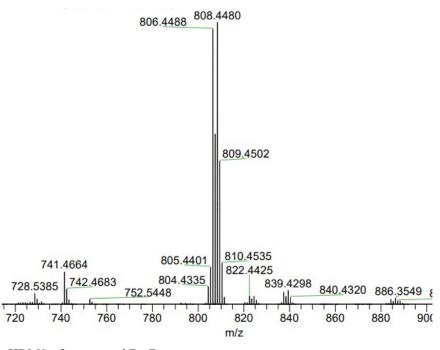


Figure S52 The HRMS of compound D₄-Br.

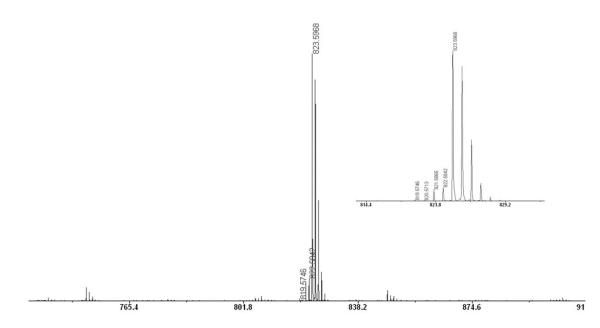


Figure S53 The MALDI-TOF MS of compound $D_4\mbox{-}d.$

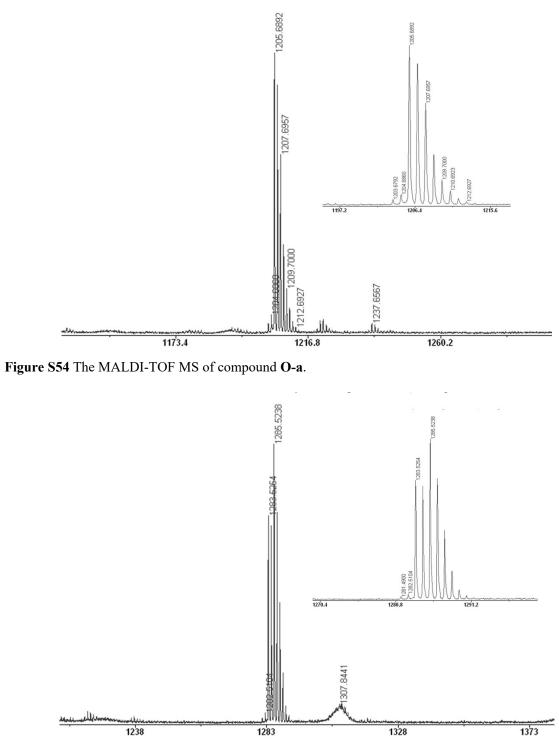


Figure S55 The MALDI-TOF MS of compound O-Br.

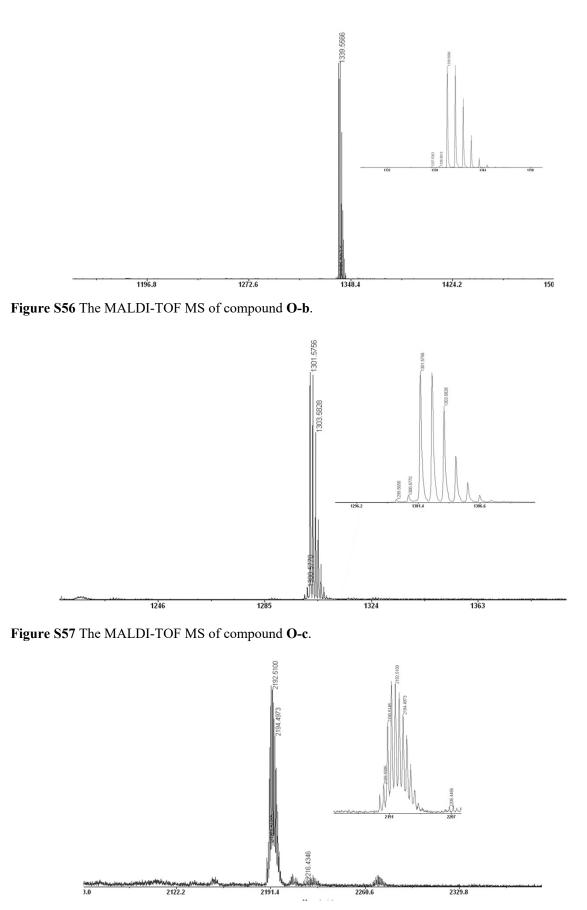


Figure S58 The MALDI-TOF MS of compound P-a1.

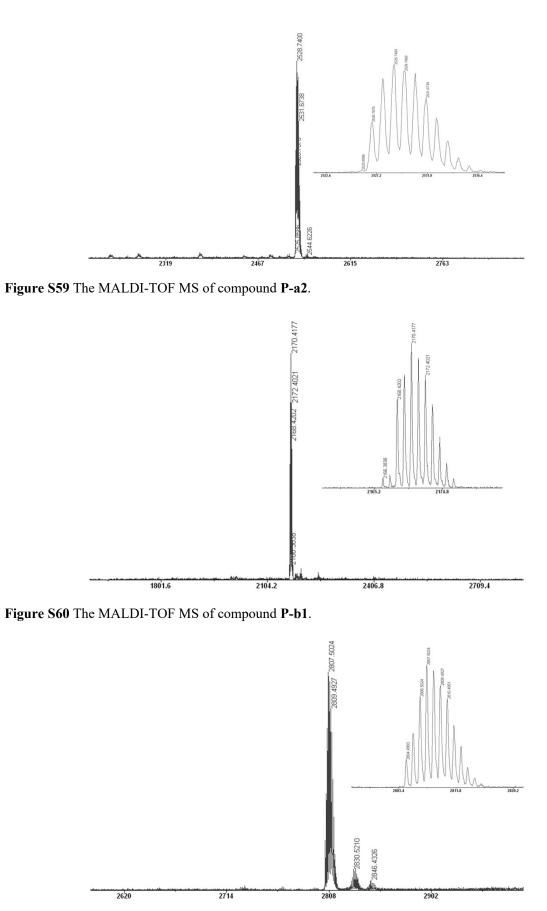


Figure S61 The MALDI-TOF MS of compound P-b2.

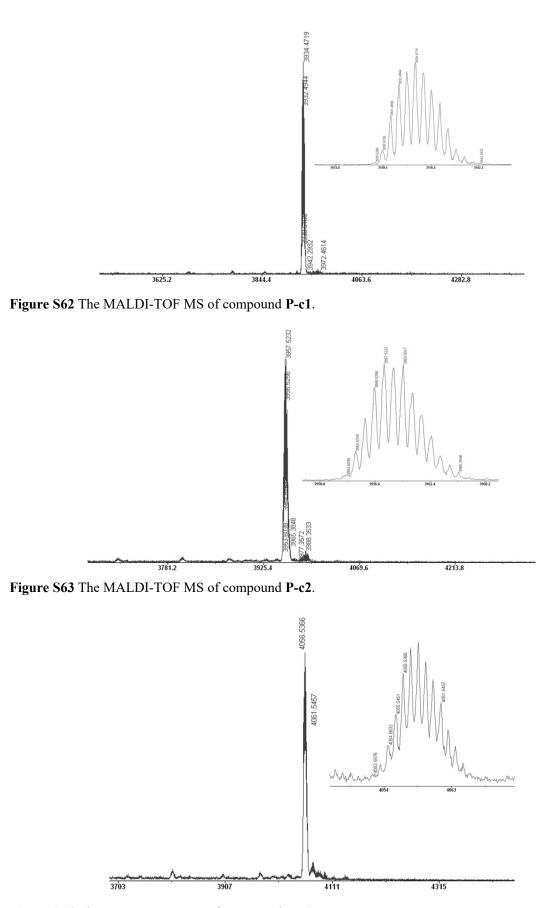


Figure S64 The MALDI-TOF MS of compound P-c3.

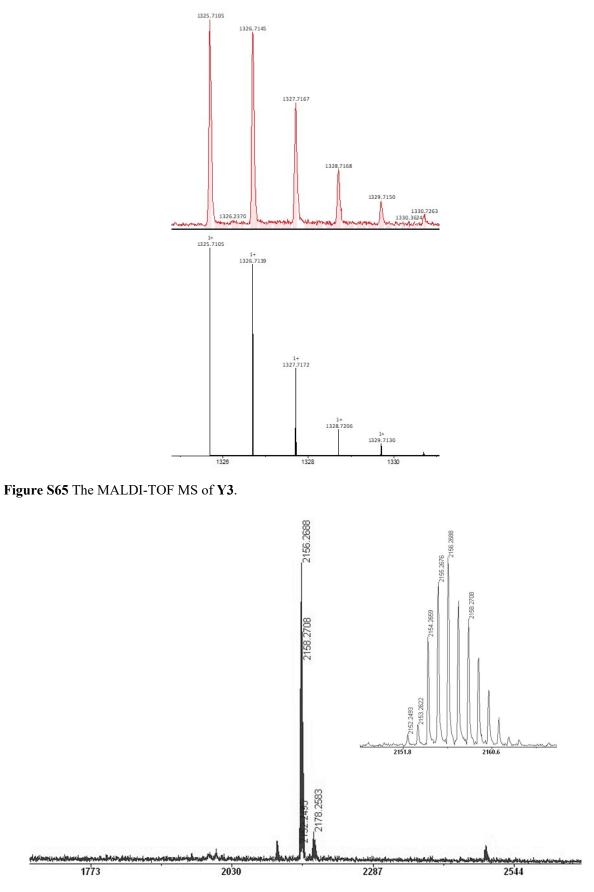
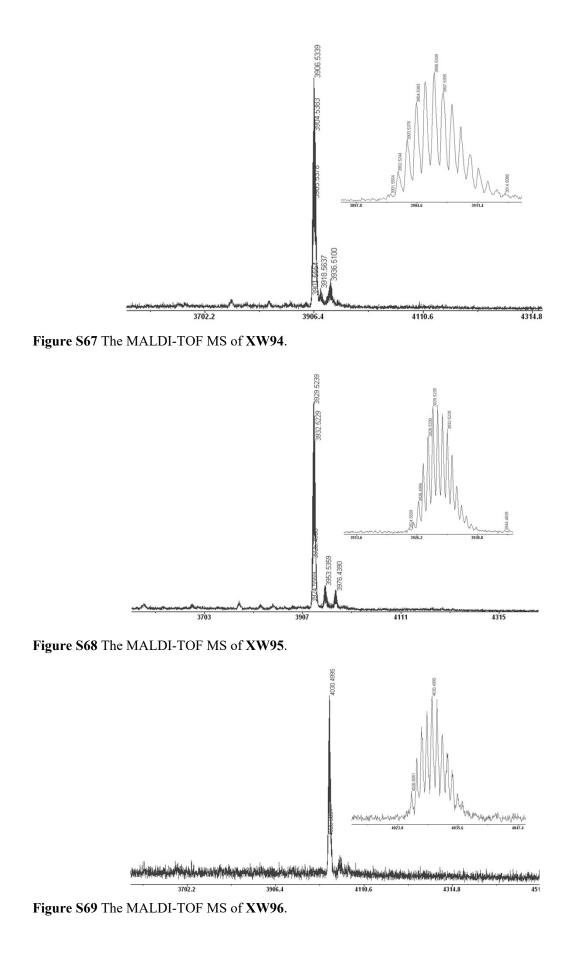



Figure S66 The MALDI-TOF MS of XW93.

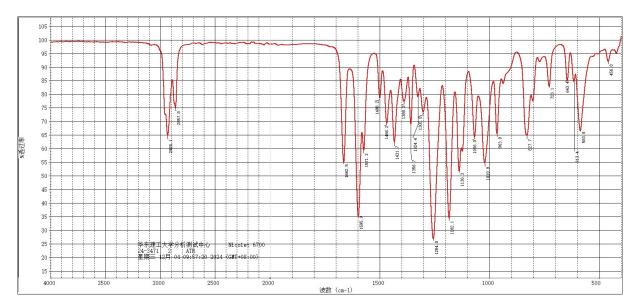


Figure S70 The IR spectrum of 2,4-dihexyloxyacetophenone.

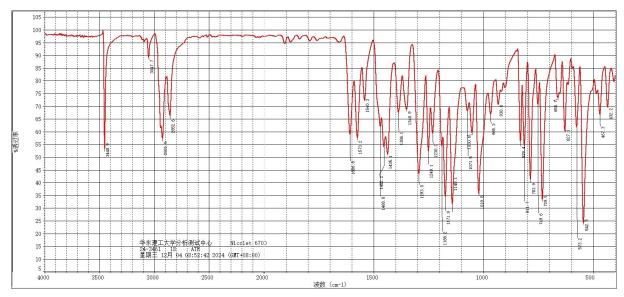


Figure S71 The IR spectrum of compound D₄-a.

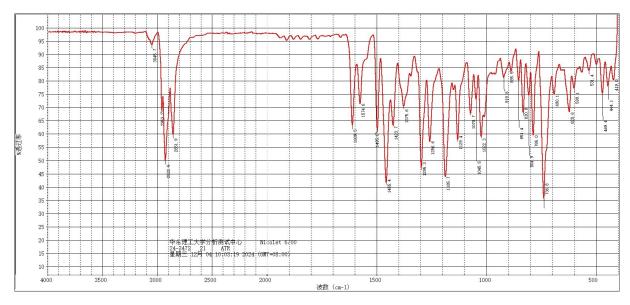


Figure S72 The IR spectrum of compound D₄-b.

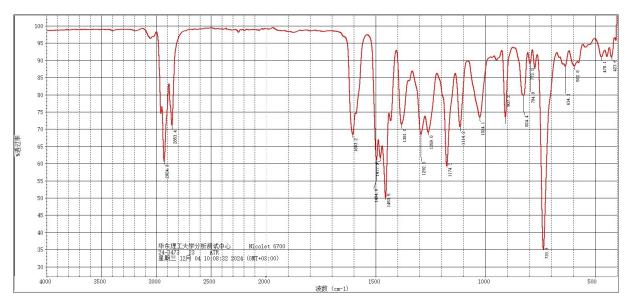


Figure S73 The IR spectrum of compound D₄-c.

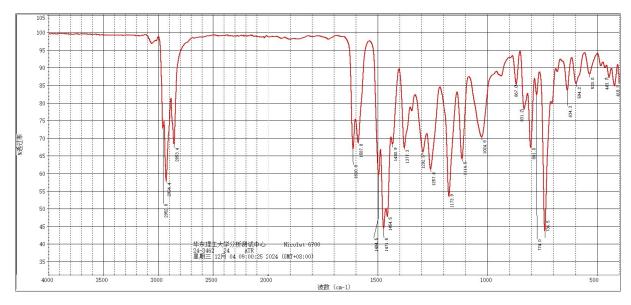


Figure S74 The IR spectrum of compound D_4 -Br.



Figure S75 The IR spectrum of compound D₄-d.

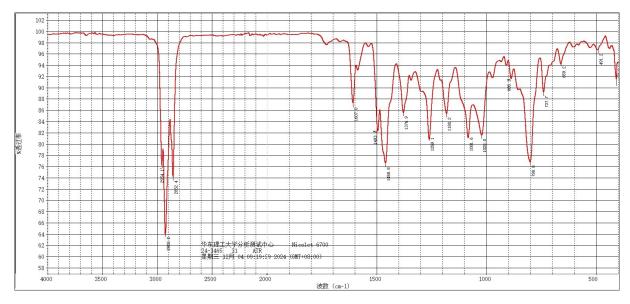


Figure S76 The IR spectrum of compound O-a.

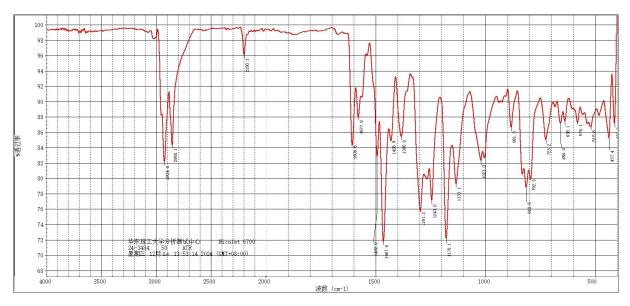


Figure S77 The IR spectrum of compound O-Br.

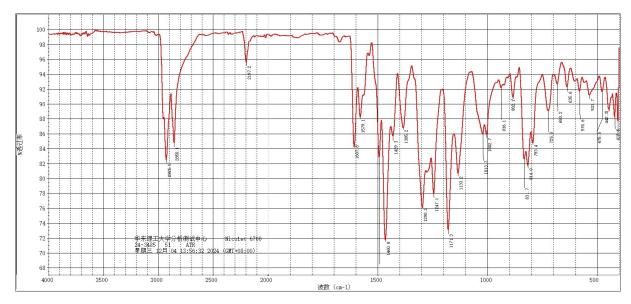


Figure S78 The IR spectrum of compound O-b.

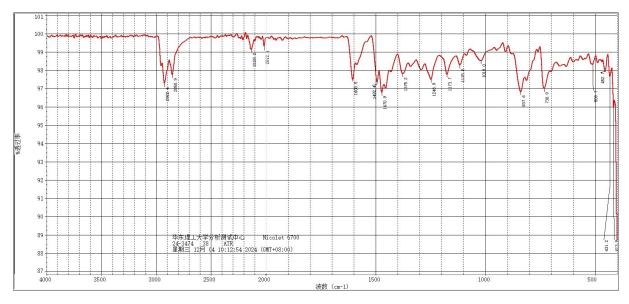


Figure S79 The IR spectrum of compound O-c.

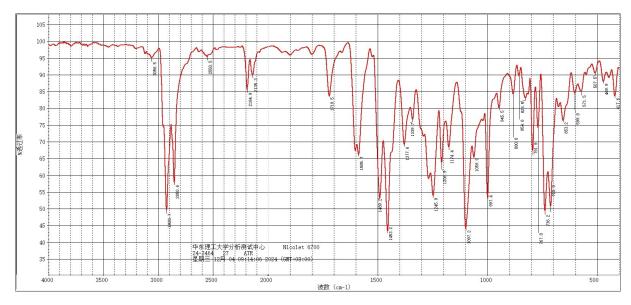


Figure S80 The IR spectrum of compound P-a1.

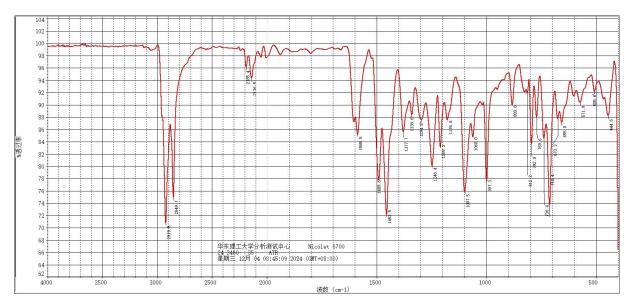


Figure S81 The IR spectrum of compound P-a2.

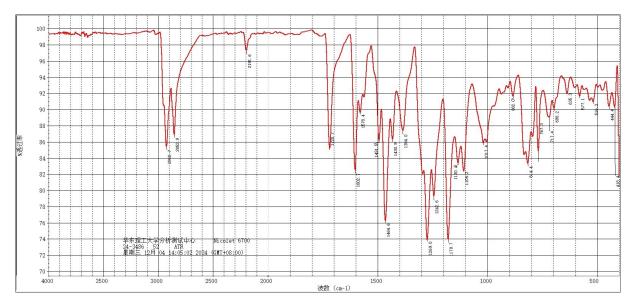


Figure S82 The IR spectrum of compound P-b1.

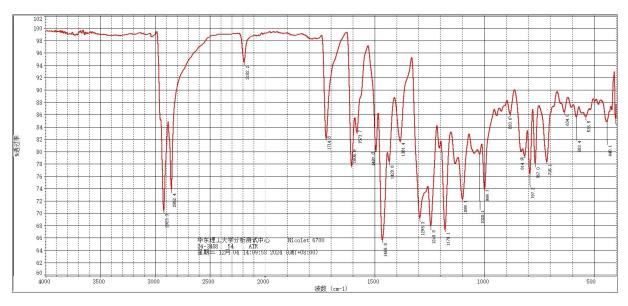


Figure S83 The IR spectrum of compound P-b2.

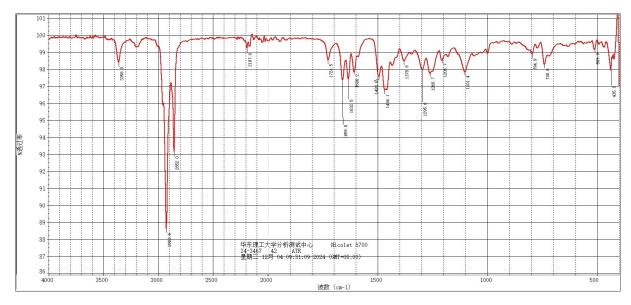


Figure S84 The IR spectrum of compound P-c1.

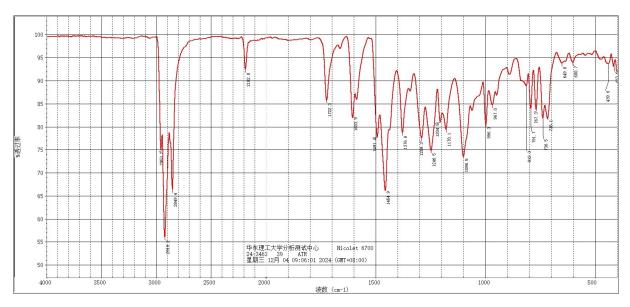


Figure S85 The IR spectrum of compound P-c2.

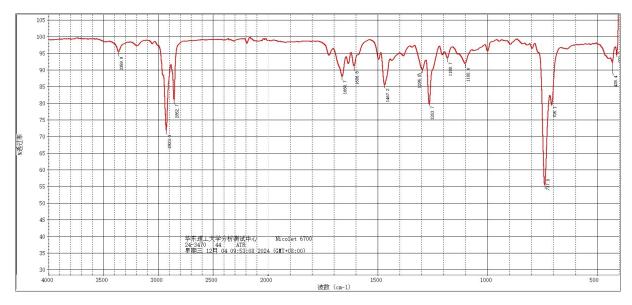


Figure S86 The IR spectrum of compound P-c3.

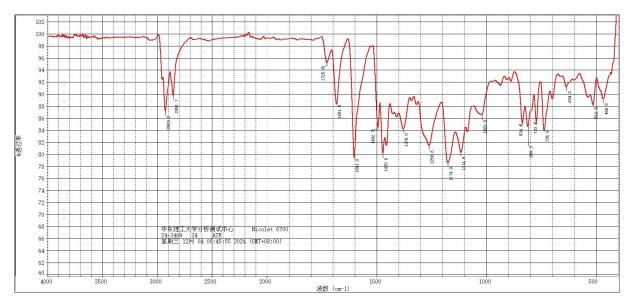


Figure S87 The IR spectrum of Y3.

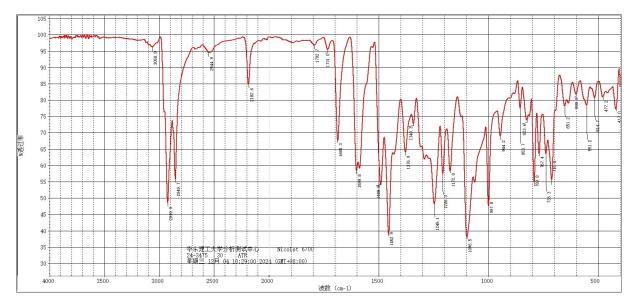


Figure S88 The IR spectrum of XW93.

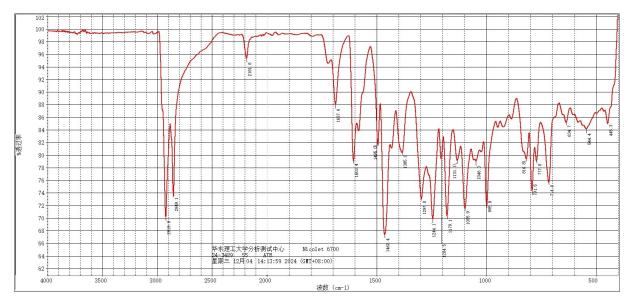


Figure S89 The IR spectrum of XW94.

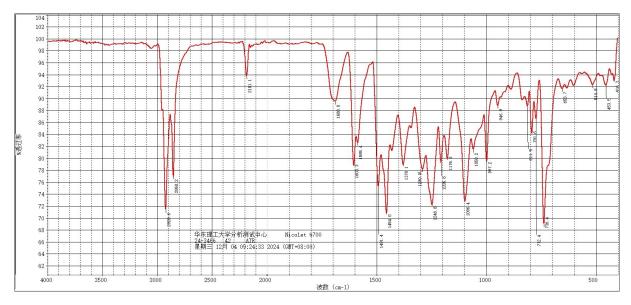


Figure S90 The IR spectrum of XW95.

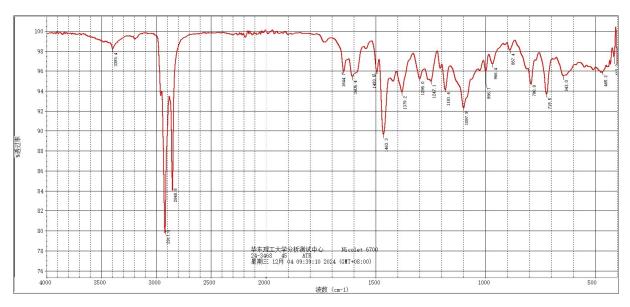


Figure S91 The IR spectrum of XW96.

8 Cartesian coordinates of the optimized structures

Y2

01 C -4.37888400 2.00002100 -0.72745300 C -5.12555400 0.79877100 -0.61768800 C -3.00402600 1.98531700 -0.64046200 C -2.31554900 0.76997200 -0.42284400 C -3.07355700 -0.40835100 -0.32250200 H -2.44641000 2.91594800 -0.76735000 H -2.55887400 -1.35374300 -0.15531100 H-5.01560600-1.34422200-0.28999200 N -6.49791600 1.06973500 -0.69441000 C -4.46540400 -0.41078900 -0.41015300 C -5.37941400 3.06682200 -1.04607500 H -5.54674900 3.00930200 -2.14251900 C -6.63278400 2.48951700 -0.41136800 C -0.85377200 0.76895600 -0.28118000 C -0.02557700 -0.34349100 -0.65437600 C -0.16126800 1.86109100 0.21744900 C 1.41973900 -0.28587700 -0.51350800 C 1.24301100 1.91609800 0.35419700 H -0.73064500 2.73035700 0.55227600 C 2.08689600 0.87231000 0.00581900 H 1.67015600 2.83126200 0.76717800 N -0.43812000 -1.50297700 -1.16697200 N 2.02703800 -1.39685700 -0.91861200 S 0.87403100 -2.41895100 -1.43311400 C 3.52789800 0.94454000 0.15879200 C 4.25756400 2.02027400 0.65859700 S 4.58513500 -0.38241300 -0.28922800 C 5.63868600 1.77835200 0.68002300 H 3.78929800 2.94560100 0.99400800 C 5.96010100 0.51341000 0.19409600 C 7.38351400 0.34731400 0.24962800 C 7.96076700 1.50194600 0.77097000 S 8.54968300 -0.84359800 -0.13407400 C 9.36187500 1.41414700 0.85621800 C 9.85084300 0.19836700 0.39954500 H 10.01189500 2.21129100 1.21777300 C 6.88967900 2.51368800 1.08685900 H 7.02412400 3.44949800 0.51816900

H 6.88111700 2.78721200 2.15562900 C 11.23357400 -0.25378600 0.33150600 C 12.24817300 0.43540700 1.02332800 C 11.60030400 -1.38503000 -0.42282900 C 13.56867100 0.01850600 0.95766600 H 11.99303300 1.30169000 1.63588600 C 12.91849600 -1.80690700 -0.48282000 H 10.83774300 -1.93270500 -0.98239600 C 13.91773000 -1.10886800 0.20400000 H 14.34389100 0.56092000 1.50080100 H 13.20467500 -2.68249600 -1.06890900 C 15.31142500 -1.59854900 0.10411800 O 15.65632600 -2.56396400 -0.53201500 O 16.18289300 -0.85361100 0.80261300 H 17.05118800 -1.26112800 0.66698700 C -5.47386300 4.52723100 -0.65310000 H-5.16448700 4.66777300 0.39460000 H -4.85792100 5.19392500 -1.27261800 C -7.71276900 3.41170500 -0.93841600 H -7.94171600 3.15973500 -1.98535400 H -8.65616400 3.37944700 -0.37611500 C -7.00180000 4.79616100 -0.82837100 H -7.39482600 5.37388000 0.02096300 H -7.19712400 5.39922900 -1.72698700 H -6.55128400 2.64304600 0.68879800 C -7.52395500 0.14400000 -0.50595800 C -7.50246200 -1.08618700 -1.18960300 C -8.60803600 0.44536300 0.33677600 C -8.52607500 -2.01252400 -1.02659900 H -6.68223100 -1.29484500 -1.87806400 C -9.63386200 -0.47508000 0.48331900 H -8.63081500 1.39287800 0.87811200 C -9.59941100 -1.70884600 -0.18799500 H -8.49095200 -2.95954500 -1.57057500 C -10.89020100 -0.35252000 1.33061800 C -10.80227800 -2.46295300 0.16377300 C -11.56834100 -1.68489800 1.05217500 C -11.75723600 0.82076100 0.85891300 C -10.54546900 -0.20513900 2.81712900 C -11.24074300 -3.72764800 -0.22903300 C -12.77122900 -2.16741900 1.54993100 H -11.22898300 1.77691200 1.00023200 H -12.69664000 0.86556800 1.43144100 H -12.00789600 0.71968700 -0.20705500

H -9.91996100 -1.04216600 3.15966600 H -9.99731900 0.73238100 2.99981000 H -11.46099400 -0.18606400 3.42843000 C -12.45066600 -4.20636200 0.27347400 H -10.64893600 -4.33557700 -0.91775200 C -13.21096300 -3.43463200 1.15544400 H -13.37179900 -1.56957400 2.24111800 H -12.80762000 -5.19501900 -0.02495400 H -14.15632200 -3.82491200 1.53974900

01

C -3.79107200 1.28548400 -1.29024000 C -4.50441100 0.30901700 -0.56904400 C -2.41394300 1.32276500 -1.25241900 C -1.69156800 0.38252200 -0.48338000 C -2.42279300 -0.58135300 0.23097900 H -1.87997000 2.06898200 -1.84532700 H-1.88580100-1.31058300 0.83627200 H -4.34298300 -1.36475100 0.80959800 N -5.86725300 0.50884100 -0.72864400 C -3.81496500 -0.62610000 0.20689000 C -6.90233000 -0.37231500 -0.43648800 C -8.20075100 0.12246600 -0.19895300 C -6.68743700 -1.76501500 -0.42105100 C -9.25915500 -0.74050200 0.06493300 H -8.37222500 1.19932500 -0.19971600 C -7.74401500 -2.61503700 -0.14450400 H -5.70182600 -2.16609000 -0.65982800 C -9.03472500 -2.11567100 0.10427900 H-10.25485800-0.32954300 0.24885600 C -7.72750600 -4.13409800 -0.07527500 C -9.92924900 -3.24416400 0.35676500 C -9.18163700 -4.43303300 0.25558100 C -11.29192300 -3.28834500 0.65296900 C -9.79197200 -5.66484200 0.44912200 C -11.89902000 -4.52908700 0.84735100 H -11.87640000 -2.36836500 0.73225600 C -11.15750000 -5.70867200 0.74691900 H -9.21801200 -6.59244400 0.37144300 H -12.96540700 -4.57947700 1.08050900 H -11.64855400 -6.67226200 0.90226200 C -6.79209700 -4.62306000 1.03664100 H -5.74942600 -4.34295400 0.81885300 H -6.83535300 -5.71947000 1.12820300 C -7.32839000 -4.74667200 -1.42282000 H -7.99450200 -4.39711700 -2.22495400 H -6.29562600 -4.47016400 -1.68650800 C -4.77470700 2.13693900 -2.04127200 H -4.54053100 3.20919500 -2.02556100 H -4.83286700 1.82000600 -3.09678500 C -6.10065400 1.83359600 -1.30770000 H -6.93768900 1.77892600 -2.01887500

H -7.07237000 -4.18531000 2.00582200 H -7.38462300 -5.84555200 -1.38219600 C -0.22668600 0.45219300 -0.42036200 C 0.60914300 -0.69617400 -0.20560900 C 0.46258200 1.64463600 -0.57800300 C 2.05734700 -0.57715700 -0.17226900 C 1.86927900 1.75903800 -0.54540000 H -0.11053100 2.56420800 -0.71111000 C 2.72023600 0.68243300 -0.34513100 H 2.29329000 2.75592300 -0.67574600 N 0.20105500 -1.95404900 -0.03674900 N 2.67103700 -1.74008900 0.02321400 S 1.52028800 -2.87970200 0.15000100 C 4.16405200 0.82048300 -0.30886700 C 4.89007900 1.99957300 -0.45743200 S 5.23024700 -0.55096600 -0.06037100 C 6.27554600 1.80031500 -0.37189400 H 4.41616700 2.96722300 -0.62190200 C 6.60406400 0.46401600 -0.15780200 C 8.03153600 0.34750000 -0.08357500 C 8.60438800 1.60575200 -0.24766500 S 9.20643500 -0.87418300 0.14588000 C 10.00906800 1.57175400 -0.18701300 C 10.50524100 0.29240800 0.02011400 H 10.65581500 2.44092200 -0.30927900 C 7.52563400 2.63856200 -0.44822400 H 7.62118400 3.15317600 -1.41943700 H 7.54997800 3.41902200 0.33117700 C 11.89327000 -0.13302700 0.13517600 C 12.91823600 0.81136100 0.33687700 C 12.25512900 -1.49125500 0.04805300 C 14.24356700 0.41772400 0.43837400 H 12.66807600 1.86920600 0.43251100 C 13.57848100 -1.88627500 0.15704000 H 11.48396200 -2.24675700 -0.12245800 C 14.58771900 -0.93680200 0.35052400 H 15.02684600 1.16037900 0.59686900 H 13.86081400 -2.93866200 0.08756300 C 15.98634900 -1.41068900 0.45659800 O 16.32732500 -2.56596400 0.38753900 O 16.86751700 -0.41480800 0.64132300 H 17.73826300 -0.83571200 0.69641900 C -6.41540600 2.87868400 -0.25904300 C -6.94619100 4.11797200 -0.67415000

C -6.18586900 2.68872700 1.09571600 C -7.23724700 5.11431100 0.25090000 O -7.14130500 4.24825700 -2.00591300 C -6.46417600 3.67715700 2.04372900 H -5.78484800 1.72920600 1.42913600 C -6.99332400 4.89487500 1.61545100 H -7.65287600 6.07810000 -0.03954600 C -7.68980800 5.43936400 -2.49786100 H -6.26937000 3.48024400 3.09711700 O -7.30684800 5.92182600 2.43133700 H -7.04608500 6.30791500 -2.27454000 H -8.69538100 5.62740400 -2.08316900 H -7.76844900 5.32414300 -3.58624600 C -7.09045800 5.77577000 3.80669700 H -7.68433400 4.94653800 4.23004700 H -6.02488300 5.60177400 4.03859300 H -7.40726200 6.71528700 4.27708900

01

C 0.85464300 -1.97722500 -0.28445000 C 0.02009200 -3.05546800 -0.27433000 C -1.32394300 -2.53893200 -0.22854300 N -1.29405900 -1.17272900 -0.20730100 C 0.01699200 -0.80732900 -0.24074600 C -0.87551500 3.85145100 -0.07586100 C 0.20619000 3.02372000 -0.14047500 C -0.30526300 1.67848500 -0.16870500 N -1.66581800 1.69531500 -0.12414900 C -2.04310800 3.00772300 -0.06883600 C 0.50469600 0.52034200 -0.22777300 C -6.68938000 2.12585400 0.07158200 C -5.85609300 3.20336500 0.05887500 C -4.51002200 2.68799200 0.01154100 N-4.54093000 1.31895100 -0.00828100 C -5.84965700 0.95461400 0.02749000 C -3.36160500 3.48668000 -0.01118500 C -4.96016200 -3.70665500 -0.14047500 C -6.04040400 -2.87952200 -0.07304700 C -5.52722200 -1.53243900 -0.04434200 N -4.16915700 -1.54870600 -0.09084800 C -3.79023100 -2.86349300 -0.14833900 C -2.47634700 -3.34059000 -0.20744600 C -6.33579900 -0.37355800 0.01629200 C -3.55156100 4.96235200 0.02909000 C -2.28352100 -4.81578800 -0.25085300 C -1.99333700 -5.45899800 -1.46478300 C -1.80869800 -6.84752900 -1.51003300 C -1.91953800 -7.58128000 -0.33312900 C -2.20704100 -6.97111800 0.88375300 C -2.38781300 -5.58180000 0.92123900 C -3.83654700 5.61036900 1.24164400

C -4.01672400 6.99968200 1.28260300 C -3.90663400 7.72919100 0.10301600 C -3.62404000 7.11415500 -1.11259100 C -3.44762700 5.72421600 -1.14572700 O -3.91875500 4.81070600 2.32100400 O -3.17438100 5.02855800 -2.26493300 O -2.66615800 -4.89115100 2.04235400 O -1.91141500 -4.65527600 -2.54107600 C -7.74119400 -0.55704600 0.06490000 Zn -2.91778300 0.07315600 -0.10792900 C -8.95124600 -0.71482700 0.10831400 C -10.35687800 -0.89726800 0.15906700 C -10.91344200 -2.19233400 0.14798600 C -12.28769900 -2.36945900 0.19796500 C -13.13989800 -1.25975800 0.26023100 C -12.59572800 0.03035800 0.27152100 C -11.22380700 0.21349100 0.22173100 C 1.91039400 0.70351200 -0.27233100 C 3.12125700 0.85921000 -0.31102400 C 6.45851200 2.49504400 -0.36295200 C 7.31626100 1.37766700 -0.41917400 C 5.08954200 2.33878800 -0.32444900 C 4.52680600 1.04146100 -0.35271900 C 5.39547900 -0.06347800 -0.43496100 C -2.81607200 -5.58017900 3.25053100 C -1.59522300 -5.20939200 -3.78607400 C -4.23036100 5.37041400 3.56465600 C -3.02763400 5.71233100 -3.47646100 H 1.94149800 -1.96114900 -0.31427800 H 0.28248900 -4.11085000 -0.29189300 H -0.89108100 4.93813200 -0.03223500 H 1.26106200 3.28665700 -0.16341400 H -7.77618800 2.11023500 0.10300900 H -6.11916400 4.25862300 0.07556200 H-4.94542700-4.79330100-0.18571400

S74

H -7.09509600 -3.14301400 -0.04905500 H -1.58531300 -7.35407400 -2.44810400 H -1.77726900 -8.66420700 -0.36536700 H -2.28496800 -7.57217700 1.78881600 H -4.23687900 7.51000600 2.21938900 H -4.04613800 8.81257100 0.13196300 H -3.54719500 7.71184800 -2.01997700 H -12.71493600 -3.37319000 0.18910100 H -13.27877000 0.88078800 0.32024000 H -10.79956200 1.21906700 0.23041900 H 4.43109800 3.20905900 -0.27850000 H 4.96556100 -1.06603900 -0.48160300 H -3.05018300 -4.82614700 4.01239600 H -3.64236600 -6.31133200 3.20630200 H -1.88999500 -6.10649900 3.54172700 H -0.60741300 -5.70278300 -3.77674000 H -2.35502400 -5.93944000 -4.11641700 H -1.56907300 -4.37682300 -4.50016900 H -5.21654000 5.86704400 3.55575500 H -4.25769900 4.54055500 4.28186400 H -3.46745500 6.09918800 3.89069700 H -2.79859300 4.95464900 -4.23623700 H -3.95355700 6.23981700 -3.76595200 H -2.19929800 6.44156000 -3.43849600 H 7.41631000 -0.79182900 -0.56432800 N 8.63614500 1.78560000 -0.47472500 C 6.77765700 0.08589200 -0.47077500 C 9.77000300 0.97749400 -0.44112400 C 10.92047000 1.35347700 -1.16044300 C 9.80433100 -0.19381700 0.33994200 C 12.07457500 0.57775100 -1.12770400 H 10.90389300 2.26372700 -1.76129500 C 10.95065700 -0.96971100 0.35695700 H 8.94018200 -0.46392900 0.94865400 C 12.09169000 -0.59557500 -0.37495700

H 12.95290700 0.89066800 -1.69749400 C 11.19452500 -2.26266000 1.11886900 C 13.13478500 -1.59603600 -0.15301600 C 12.62735300 -2.57828000 0.71852200 C 14.43716400 -1.68937300 -0.64437500 C 13.41817600 - 3.65359400 1.10054500 C 15.22616000 -2.77256500 -0.25769500 H 14.83531000 -0.92906800 -1.32085100 C 14.72297400 -3.74748100 0.60717300 H 13.03178900 -4.42048300 1.77756300 H 16.24802500 -2.86008000 -0.63460500 H 15.35443500 -4.58967700 0.89987400 C 10.23220900 -3.36220400 0.65429400 H 9.19065600 - 3.09278600 0.89015000 H 10.45705300 -4.31486800 1.15836800 C 11.07584200 -2.04655300 2.63201300 H 11.76188300 -1.25654700 2.97052000 H 10.04998600 -1.75413600 2.90532800 H -10.24780600 -3.05594900 0.09931600 H 10.31116000 - 3.52005500 - 0.43119700 H 11.31993300 -2.97163600 3.17681800 C 8.72674000 3.24110700 -0.62509500 H 9.02684100 3.48874400 -1.65880600 C 7.28684400 3.74494800 -0.33211300 H 6.96633300 4.46531400 -1.10070300 C 9.64349700 3.92482200 0.40741600 H 10.59015600 4.27861800 -0.02486500 H 9.90137200 3.19200400 1.18795800 C 7.38992800 4.45522900 1.02736800 H 6.59220700 5.19693500 1.18064900 H 7.30738600 3.71023100 1.83635400 C 8.79354100 5.04875600 1.00260200 H 9.14965000 5.37687500 1.99063800 H 8.81307800 5.93196700 0.34117500 C -14.61415300 -1.39585800 0.31536900 O -15.38735300 -0.47132200 0.37031500 O -15.02667500 -2.67294800 0.29848500 H -15.99407300 -2.64168800 0.33756900 01

C 0.03841500 -2.32613800 0.34125200 C 0.94773200 -3.31710800 0.56547500 C 2.25225600 -2.71963500 0.43637200 N 2.12549100 -1.39034200 0.14506500 C 0.79136200 -1.12730600 0.08001300 C 1.35365300 3.47855000 -0.91905400 C 0.33258400 2.59108300 -0.74877700 C 0.93732600 1.31973900 -0.44824800 N 2.29341000 1.43879100 -0.43696100 C 2.57758400 2.74584400 -0.71767400 C 0.21087100 0.13119300 -0.20264000 C 7.27542500 2.23608000 -0.48189400 C 6.36715200 3.22742300 -0.70069800 C 5.06145000 2.62007300 -0.62343600 N 5.18993400 1.28316500 -0.35589000 C 6.52144700 1.02595800 -0.26760600 C 3.85904700 3.31312600 -0.80103500 C 5.96367500 -3.60269900 0.63330600 C 6.98341700 -2.71419200 0.47084600 C 6.37616800 -1.43113500 0.21840100 N 5.02199900 -1.54481700 0.22948700 C 4.73669300 -2.85983300 0.48392200 C 3.45907300 - 3.42030600 0.58974600 C 7.10091800 -0.23741000 -0.00568100 C 3.94441900 4.76792800 -1.10347200 C 3.37112100 -4.87566600 0.88876600 C 3.56087500 - 5.34598100 2.19806400 C 3.47899400 -6.71585900 2.48267700 C 3.20383100 -7.60446900 1.44806400 C 3.00979500 -7.16701900 0.14162700 C 3.09585500 -5.79590000 -0.13541800 C 4.25879000 5.20775000 -2.39934800

C 4.34118700 6.57687500 -2.68742700 C 4.10414900 7.49569000 -1.66992700 C 3.78939900 7.08897400 -0.37712000 C 3.71134000 5.71813800 -0.09636800 O 4.46656000 4.23597000 -3.30686900 O 3.41796500 5.21586600 1.11728700 O 2.92850800 -5.26564300 -1.36096900 O 3.81857500 -4.40157000 3.12163800 C 8.51649300 -0.31268000 0.03512800 Zn 3.65791300 -0.05331400 -0.10466600 C 9.73538000 -0.37652300 0.07024000 C 11.15129000 -0.44871500 0.11092900 C 11.80089400 -1.67435700 0.36168700 C 13.18514900 -1.74330000 0.40136200 C 13.95480800 -0.59204900 0.19209300 C 13.31791600 0.62967500 -0.05770500 C 11.93557900 0.70465800 -0.09862600 C -1.20484100 0.20686900 -0.24329300 C -2.42401800 0.27118800 -0.27835100 C 2.61933300 -6.10786500 -2.43429900 C 4.04923900 -4.78575900 4.44683600 C 4.81625500 4.58558900 -4.61554400 C 3.14269800 6.09259100 2.17199600 H -1.04722500 -2.38677200 0.35208300 H 0.76091000 -4.36228200 0.80149700 H 1.29310600 4.53682000 -1.16277800 H -0.73804400 2.76711400 -0.82076300 H 8.36047900 2.30392700 -0.46120900 H 6.55384100 4.28118900 -0.89506300 H 6.02550000 -4.66995600 0.83379000 H 8.05451000 -2.89712400 0.51196200 H 3.62348100 -7.08849500 3.49595400 H 3.13851000 -8.67300300 1.66710000 H 2.79848100 -7.88724800 -0.64773800 H 4.58333200 6.92606500 -3.69037200

H 4.16715600 8.56380500 -1.89167300 H 3.61215600 7.83221300 0.39918600 H 13.68451100 -2.69356100 0.59560200 H 13.93762100 1.51422600 -0.21796100 H 11.43905400 1.65692500 -0.29328600 H 2.51469000 -5.46339100 -3.31605700 H 3.42008000 -6.84439300 -2.62333600 H 1.66983400 -6.64769500 -2.27203300 H 3.17126300 - 5.28977400 4.88791100 H 4.92441200 -5.45338500 4.53432500 H 4.24864000 - 3.86440600 5.00822100 H 5.76191600 5.15464200 -4.64953100 H 4.94849900 3.64495700 -5.16463900 H 4.02568000 5.17859200 -5.10823500 H 2.91984400 5.46819700 3.04622500 H 4.00683400 6.73910600 2.40586100 H 2.26786200 6.73122500 1.95717500 H 11.19950800 -2.57050700 0.52453400 C 15.43586100 -0.61317000 0.22434200 O 16.14013000 0.35077700 0.04989200 O 15.94048100 -1.83207000 0.47142300 H 16.90355400 -1.72789700 0.46932200 C -3.83939800 0.34882500 -0.32040200 C -4.48693100 1.57795900 -0.59021300 C -4.62996400 -0.79144000 -0.08467000 C -5.86312300 1.63364100 -0.62759800 H -3.88738700 2.47387600 -0.76488900 H -4.13323100 -1.73658000 0.14333300 C -6.02023300 -0.74221800 -0.11896600 C -6.63963300 0.47915700 -0.40387300 C -6.78862100 2.78464100 -0.90147700 H -6.60267200 -1.63667000 0.10102800 N -7.98664600 0.80498500 -0.44012900 H -6.49313500 3.71988000 -0.40893500 H -6.84946900 2.97917100 -1.98597700

C -8.13895500 2.25979100 -0.36430700 C -9.07284500 -0.05582600 -0.55287100 H -8.96776700 2.57427800 -1.01505100 C -8.40991400 2.74273200 1.04422700 C -10.34313500 0.35148200 -0.09749800 C -8.93759700 -1.31849500 -1.16401000 C -8.86903900 4.06334800 1.23135600 C -8.20428300 1.95827100 2.16964400 C -11.45108800 -0.47916600 -0.22775700 H-10.45314100 1.32343100 0.38437700 C -10.04308600 -2.14340900 -1.27725400 H -7.97448400 -1.62399400 -1.57459900 C -9.11583400 4.55782600 2.50712000 O -9.04217200 4.78270500 0.09950300 C -8.43876200 2.43491800 3.46221300 H -7.85760100 0.93128200 2.03628900 C -11.30543200 -1.73756600 -0.80936300 H-12.42348400-0.13941900 0.13711300 C -10.11381500 -3.53185400 -1.89368100 C -8.89759000 3.74195400 3.62798200 H -9.47543400 5.57082500 2.68174300 C -9.51513400 6.09744100 0.19703100 H -8.26412900 1.78052800 4.31518300 C -12.26491500 -2.80917300 -1.07106500 C -11.58539000 -3.86690700 -1.70506700 C -9.21726400 -4.51648600 -1.13404300 C -9.73909500 -3.49858800 -3.37992000 O -9.16334900 4.31373100 4.81988700 H -8.82545200 6.73718000 0.77462500 H-10.51355300 6.13819100 0.66609700 H -9.58617500 6.48354100 -0.82761800 C -13.63045700 -2.90600100 -0.80189300 C -12.26654700 -5.01997000 -2.07074900 H -8.15845000 -4.22644700 -1.22297800 H -9.32395600 -5.53422600 -1.54048900

H -9.47991800 -4.54284100 -0.06642300 H -10.37765200 -2.79172100 -3.92934100 H -8.69018300 -3.19003700 -3.51114500 H -9.85805400 -4.49490000 -3.83330100 C -8.96313600 3.56205600 5.98387800 C -14.30892300 -4.06762300 -1.17082700 H -14.16226800 -2.08756700 -0.31038400 C -13.63493700 -5.11707300 -1.79992200 H -11.74575500 -5.84525500 -2.56427600 H -9.60287500 2.66218500 6.00673900 H -7.90970100 3.25003100 6.09490700 H -9.23225700 4.21013000 6.82761100 H -15.37847100 -4.15811100 -0.96602700 H -14.18144000 -6.02006200 -2.08224300

9 References

- 1. W. Humphrey, A. Dalke and K. Schulten, *Journal of Molecular Graphics*, 1996, 14, 33–38.
- 2. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261.
- 3. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 4. T. Lu and F. Chen, *Journal of Computational Chemistry*, 2012, **33**, 580–592.
- 5. H. Song, J. Zhang, J. Jin, H. Wang and Y. Xie, J. Mater. Chem. C, 2018, 6, 3927–3936.
- Y. Chen, Y. Tang, J. Zou, K. Zeng, G. Baryshnikov, C. Li and Y. Xie, ACS Appl. Mater. Interfaces, 2021, 13, 49828–49839.
- X. Z. Wang, J. Yang, H. Yu, F. Li, L. Fan, W. Sun, Y. R. Liu, Z. Y. Koh, J. H. Pan, W. L. Yim, L. Yan and Q. Wang, *Chem. Commun.*, 2014, **50**, 3965–3968.
- A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Grätzel, *Science*, 2011, **334**, 629–634.
- 9. K. Zeng, Y. Chen, W.-H. Zhu, H. Tian and Y. Xie, J. Am. Chem. Soc., 2020, 142, 5154–5161.
- 10. J. Zou, Y. Wang, G. Baryshnikov, J. Luo, X. Wang, H. Ågren, C. Li and Y. Xie, ACS Appl. Mater. Interfaces, 2022, 14, 33274–33284.