SnS₂/Covalent Organic Frameworks S-scheme Heterostructures for Photocatalytic Water Splitting: Insights from Ground-state Properties and Nonadiabatic Excited-state Dynamics

Yue Tang ^a, YiPeng Wang ^b, Xinlu Cheng ^a, *, Hong Zhang ^c

^a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.

^b College of Applied Technology, Shenzhen University, Shenzhen 518061, China.

^c College of Physics, Sichuan University, Chengdu 610064, China.

List of Method, Tables and Figures

Method	S1
Table S1	S2
Fig. S1	S2
Fig. S2	S3
Fig. S3	S4
Fig. S4	S5
Fig. S5	S5
Fig. S6	S6
Fig. S7	S6
Fig. S8	S7
Fig. S9	S8
Fig. S10	S8
Fig. S11	S9

Method

The solar-to-hydrogen (STH) efficiency η_{STH} is calculated with the formula:¹

$$\eta_{\rm STH} = \eta_{\rm ads} \times \eta_{\rm cu} \tag{1}$$

where y_{ads} and y_{cu} are the efficiencies of light absorption and carrier utilization obtained using following formulas:

$$\eta_{\rm ads} = \frac{\int_{E_{\rm g}}^{\infty} P(\hbar\omega) d(\hbar\omega)}{\int_{0}^{\infty} P(\hbar\omega) d(\hbar\omega)}$$
(2)

$$\eta_{\rm cu} = \frac{\Delta G \int_{E}^{\infty} \frac{P(\hbar\omega)}{\hbar\omega} d(\hbar\omega)}{\int_{E_{\rm g}}^{\infty} P(\hbar\omega) d(\hbar\omega)}$$
(3)

where $P(\hbar\omega)$ is the AM1.5 solar energy flux at the photon energy $\hbar\omega$. ΔG is the potential difference of water splitting, $\Delta G = 1.23$ eV. *E* is the minimum photon energy used for water splitting reaction and is defined as:¹

$$E = \begin{cases} E_{g}, & (\chi(H_{2}) > 0.2, \chi(O_{2}) \ge 0.6) \\ E_{g} + 0.2 - \chi(H_{2}), & (\chi(H_{2}) < 0.2, \chi(O_{2}) \ge 0.6) \\ E_{g} + 0.6 - \chi(O_{2}), & (\chi(H_{2}) \ge 0.2, \chi(O_{2}) < 0.6) \\ E_{g} + 0.8 - \chi(H_{2}) - \chi(O_{2}), & (\chi(H_{2}) < 0.2, \chi(O_{2}) < 0.6) \end{cases}$$
(4)

where $\chi(H_2)$ and $\chi(O_2)$ are the overpotentials of HER and OER, respectively. Considering the effect of intrinsic electric field the STH efficiency is further corrected using the following equation:^{2, 3}

$$\eta'_{\rm STH} = \eta_{\rm STH} \times \frac{\int_0^\infty P(\hbar\omega) d(\hbar\omega)}{\int_0^\infty P(\hbar\omega) d(\hbar\omega) + \Delta\varphi \int_{E_g}^\infty \frac{P(\hbar\omega)}{\hbar\omega} d(\hbar\omega)}$$
(5)

Studie $(0/)$	$\eta'_{ m STH}$ (%)	
Strain (%)	SnS ₂ /COF2	SnS ₂ /COF3
-6%	-	54.97
-4%	-	54.28
-2%	54.50	53.93
0%	53.64	54.19
2%	54.33	54.08
4%	54.56	54.53
6%	54.20	53.79
8%	53.20	53.92
10%	-	54.14

Table S1. Corrected solar-to-hydrogen efficiencies (η'_{STH}) of SnS₂/COF2 and SnS₂/COF3 under various strains.

Fig. S1 Schematic illustrations of porous covalent organic frameworks (a) COF1, (b) COF2, and (c) COF3. Top views of unit cells (d) COF1, (e) COF2, (f) COF3. (g) $4 \times 4 \times 1$ SnS₂ supercell.

Fig. S2 Stacking models of (a) SnS₂/COF1, (b) SnS₂/COF2, and (c) SnS₂/COF3.

Fig. S3 (a-c) Relative total energies of different stacking models. (d) Binding energies of SnS₂/COFs with different interlayer distance.

Fig. S4 AIMD simulation results at 300 K. Insets are side views of SnS₂/COFs before and after simulations.

Fig. S5 Average electrostatic potentials of (a) COF1, (b) COF2, (c) COF3, and (d) SnS₂ monolayers. Dashed lines represent the Fermi levels. Band structures of (e) COF1, (f) COF2, (g) COF3, and (h) SnS₂ monolayers. Arrows indicate the positions of VBM and CBM.

Fig. S6 Light absorption spectrum. (a) SnS₂/COF1, (b) SnS₂/COF2, and (c) SnS₂/COF3.

Fig. S7 (a-c) Binding energies of $SnS_2/COFs$ as function of strain. (d) Total energies of $SnS_2/COFs$ as a function of strain.

Fig. S8 Orbital decomposed density of state of (a) SnS₂/COF1, (b) SnS₂/COF2, and (c) SnS₂/COF3 under different strains. Gray regions represent total density of state, Lines with different colors represent different orbitals from different elements. Dashed lines represent the Fermi levels.

Fig. S9 The time-dependent bang gap fluctuation in $SnS_2/COF3$ under strain (a) -2%, (b) 0%, and (c) 2%.

Fig. S10 Band structures of SnS₂ with and without consideration of SOC effect.

Fig. S11 Projected band structures of (a) $SnS_2/COF1$, (b) $SnS_2/COF2$, and (c) $SnS_2/COF3$ with PBE and HSE06 methods. Projected band structures of $SnS_2/COF2$ under strain (d) 0%, (e) 4%, and (f) 6% with PBE and HSE06 methods. Color bars indicate the band alignments.

References

- 1. M. Cao, L. Ni, Z. Wang, J. Liu, Y. Tian, Y. Zhang, X. Wei, T. Guo, J. Fan, and L. Duan, *Appl. Surf. Sci.* 2021, **551**, 149364.
- 2. X. Jiang, W. Xie, X. Xu, Q. Gao, D. Li, B. Cui, D. Liu, and F. Qu, *Nanoscale* 2022, 14, 7292-7302.
- 3. R. Zhang, Y. Zhang, X. Wei, T. Guo, J. Fan, L. Ni, Y. Weng, Z. Zhao, J. Liu, Y. Tian, T. Li, and L. Duan, *Appl. Surf. Sci.* 2020, **528**, 146782.