Supporting information

New insight into designing the thick-sintered cathode for Li-ion battery; An impact of excess lithium in LiCoO₂ on its electrode performance

Shinichi Takeno^a, Taiki Suematsu^a, Ryusei Kunisaki^a, Gen Hasegawa^b, Ken Watanabe^{*c}, Kuwata Naoaki^b, Kazutaka Mitsuishi^b, Tsuyoshi Ohnishi^b, Kazunori Takada^b, Kohichi Suematsu^c and Kengo Shimanoe^c,

^{a.} Interdisciplinary Graduate School of Engineering Sciences, Department of Interdisciplinary Engineering Science, Kyushu University, Kasuga, Fukuoka,

^{b.} National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.

^c Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan

Figure S1 XRD pattern of LiCoO₂ sintered disk after grinding.

^{816-8580,} Japan.

Li excess amount (%)	Current (mA)	time (s)
0	$\pm 1.5 \times 10^{-3}$	20
1.0	\pm 1.0 ×10 ⁻²	20
2.0	± 2.00	20
3.0	± 2.00	20
4.1	± 4.00	20
5.1	± 0.700	20
6.2	± 0.400	20
7.3	± 0.200	20
8.3	± 0.166	20
12.8	± 0.100	20

Table S1 Experimental condition of electronic conductivity measurement

Table S2 Experimental condition of Li-ion conductivity measurement,(a)before charge,(b) after charge.

(a)

Li excess amount (%)	Thickness (µm)	Current (mA)	time (s)
3.0	116	\pm 1.0 $\times 10^{-3}$	60
	200	\pm 2.0 $\times 10^{-3}$	60
	289	\pm 5.0 $\times 10^{-4}$	60
	393	\pm 1.0 ×10 ⁻³	60
	484	\pm 5.0 $\times 10^{-4}$	60
4.1	116	\pm 1.0 $\times 10^{-4}$	300
	247	\pm 1.0 $\times 10^{-4}$	900
	391	\pm 5.0 ×10 ⁻⁵	900
5.1	189	\pm 3.0 $\times 10^{-3}$	60
	293	\pm 3.0 $\times 10^{-3}$	60
	390	\pm 3.0 $\times 10^{-3}$	60
7.3	206	\pm 8.0 ×10 ⁻³	20
	398	\pm 8.0 ×10 ⁻³	20
	573	$\pm 4.0 \times 10^{-3}$	20

(b)

Li excess amount (%)	Thickness (µm)	Current (mA)	time (s)
3.0	184	$\pm 1.0 \times 10^{-2}$	60
	248	\pm 1.0 ×10 ⁻²	60
	330	$\pm 1.0 \times 10^{-2}$	60
4.1	141	\pm 5.0 $\times 10^{-3}$	60
	243	\pm 5.0 $\times 10^{-3}$	60
	345	\pm 2.0 $\times 10^{-3}$	60
5.1	159	\pm 1.0 $\times 10^{-2}$	60
	203	\pm 1.0 $\times 10^{-2}$	60
	312	\pm 1.0 $\times 10^{-2}$	60
7.3	142	\pm 1.0 $\times 10^{-2}$	60
	393	\pm 2.0 $\times 10^{-2}$	60
	550	\pm 1.0 $\times 10^{-2}$	60

Figure S2 Schematic diagram of the cell used for charging-discharging test.

Figure S3 Schematic diagram of the cell used for measuring Li-ion conductivity.

Figure S4 SEM image of $LiCoO_2$ powder after ball-milling (a,b)Stoichiometry,(c,d)Li12.8% excess.

Figure S5 Correlations between current and voltage of electronic conductivity measurements of (a)stoichiometry, (b)1.0%, (c)2.0%,(d) 3.0%, (e)4.1%, (f)5.1%, (g)6.2%, (h)7.3%, (i)8.3%, and (j)12.8% Li-excess LiCoO₂.

Figure S6 (a)STEM image of grain boundary of Li7.3% excess. (b-d)EELS spectra of grain boundary of Li7% excess. EELS spectra of (e)LiCoO₂, (f)Li₂CO₃.

Figure S7 Correlation between cycle number and discharge capacities of charge/discharge tests at 0.1C using LCO sintered disks with a thickness of approximately $130\mu m$.

Figure S8 Correlations between current and voltage of Li-ion conductivity measurements of LiCoO₂ in the composition of 3.0% Li-excess with thickness of (a) 116 μ m, (b) 200 μ m, (c) 289 μ m, (d) 393 μ m, (e) 484 μ m, 4.1% Li-excess with thickness of (f) 116 μ m, (g) 247 μ m, (h) 391 μ m, 5.1% Li-excess with thickness of (i) 189 μ m, (j) 293 μ m, (k) 390 μ m, 7.3% Li-excess with thickness of (l) 206 μ m, (m) 398 μ m and (n) 573 μ m.

Figure S9 Correlations between current and voltage of Li-ion conductivity measurements of LiCoO₂ after CCCV 4.2V charge in the composition of 3.0% Li-excess with thickness of(a) 184 μ m, (b) 248 μ m, (c) 330 μ m, 4.1% Li-excess with thickness of (d) 141 μ m, (e) 243 μ m, (f) 345 μ m, 5.1% Li-excess with thickness of (g) 159 μ m, (h) 203 μ m, (i) 312 μ m, 7.3% Li-excess with thickness of (j) 142 μ m, (k) 393 μ m and (l) 550 μ m.