Supporting information

Nanowire Morphology Control in Sb Metalderived Antimony Selenide Photocathodes for Solar Water Splitting

Zhenbin Wang, Yongping Gan, Dr. Erin Service, Dr. Pardis Adams, Dr. Thomas Moehl, Dr. Wenzhe Niu*, Prof. Dr. S. David Tilley*

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

Dr. Wenzhe Niu Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland

E-mail: wenzhe.niu@epfl.ch E-mail: david.tilley@chem.uzh.ch

Figure S1. Schematic illustration showing the fabrication process of the nanostructured Sb₂Se₃ thin films.

Various selenization conditions, including temperature, duration, and Se vapor pressure, were systematically investigated during the early stages of this research. Among these, a selenization condition of 325 °C for 30 minutes was found to deliver the best PEC performance for the Sb₂Se₃ photocathode and was subsequently adopted for this study.

Figure S2. Top-view SEM images of the (a) Sb-L and (b) Sb-H thin films evaporated at substrate temperatures of 25 °C and 75 °C.

Figure S3. Cross-sectional SEM images of the (a) Sb-L and (b) Sb-H thin films. (c) The thickness of the metallic Sb thin films determined by a profilometer.

Figure S4. The thickness of the Sb₂Se₃ thin films determined by a profilometer.

Figure S5. Sb 3d XPS spectra of (a) the Sb₂Se₃-L and (b) Sb₂Se₃-H thin films.

Figure S6. Top-view and cross-sectional SEM images of the (a, b) FTO/Au/Sb₂Se₃-L/TiO₂/Pt and (c, d) FTO/Au/Sb₂Se₃-H/TiO₂/Pt thin films.

Figure S7. (a) Top-view SEM image and (b) the corresponding EDS spectra of the Sb₂Se₃ thin film covered with TiO₂.

Figure S8. (a) Open-circuit voltage (OCV) measurements conducted in 1 M H₂SO₄, with Hg/HgSO₄ (1 M H₂SO₄) and Ag/AgCl (3 M KCl) serving as the working and counter electrodes, respectively. Cyclic voltammetry (CV) measurements over 1.5 hours for the Fe^{3+}/Fe^{2+} redox couple in 1 M H₂SO₄, using (b) Ag/AgCl (3 M KCl) and (c) Hg/HgSO₄ (1 M H₂SO₄) as reference electrodes.

Figure S9. LSV measurements of the Sb₂Se₃-50 °C and Sb₂Se₃-100 °C photocathodes under intermittent illumination (simulated AM 1.5 G, 100 mW cm⁻²) in a 1 M H₂SO₄ electrolyte with a scan rate of 10 mV s⁻¹.

Figure S10. Cyclic voltammetry (CV) measurements of the Sb₂Se₃-L and Sb₂Se₃-H photocathodes under illumination (simulated AM 1.5 G, 100 mW cm⁻²) in a 1 M H₂SO₄ electrolyte with a scan rate of 10 mV s⁻¹.

Figure S11. Box plots of (a) short circuit current density and (b) onset potential achieved from 20 samples of each category.

Figure S12. Stability test of the Sb₂Se₃-H photocathode at 0.2 V_{RHE} under AM 1.5 G simulated solar illumination (100 mW cm⁻²) in a 1 M H₂SO₄ electrolyte solution.

Figure S13. LSV measurements of Sb₂Se₃-H photocathodes with and without $(NH_4)_2$ S etching treatment under intermittent illumination (simulated AM 1.5 G, 100 mW cm⁻²) in a 1 M H₂SO₄ electrolyte with a scan rate of 10 mV s⁻¹.

Figure S14. (a) The reflectance spectrum of the FTO/Au/Sb₂Se₃-L/TiO₂/Pt and FTO/Au/Sb₂Se₃-H/TiO₂/Pt devices. (b) The absorbance spectrum of the FTO/Sb₂Se₃-L/TiO₂/Pt and FTO/Sb₂Se₃-H/TiO₂/Pt devices.

Figure S15. (a) The equivalent circuit is used for the EIS fitting. Nyquist plots of (b) the Sb₂Se₃-L and (c) Sb₂Se₃-H photocathodes before onset potential under 10% white light illumination. Nyquist plots of (d) the Sb₂Se₃-L and (e) Sb₂Se₃-H photocathodes after onset potentials under 10% white light illumination.

The Nyquist plots at different applied potentials are shown in Figure S9. The equivalent circuit model (Figure S9a) was used for the EIS fitting. To improve the fitting accuracy, a constant phase element (CPE) was utilized instead of an ideal capacitor. The Nyquist plots at different applied potentials are shown in Figure S9. The equivalent circuit model (Figure S9a) was used for the EIS fitting. To improve the fitting accuracy, a constant phase element (CPE) was utilized instead of an ideal capacitor. At potentials positive of photocurrent onset, three elements are observed (Figure

S9b,c): a high-frequency element corresponding to the semiconductor, a mid-frequency element corresponding to the TiO_2 , and a low frequency element corresponding to the catalyst. The resistances corresponding to the TiO_2 and catalyst decrease as the potential moves towards more negative values. As the onset potential is reached, they then become negligible, indicating that thermodynamic barriers to photogenerated charge transfer have been overcome. After the onset potential, only the element corresponding to the semiconductor remains. This element increases in size, such that the capacitance corresponds to the space charge capacitance, and the resistance corresponds to the inverse slope of the JV curve at that potential (the DC resistance).

Table S1. Extracted R_{SC} values of the Sb₂Se₃-L and Sb₂Se₃-H photocathodes from the EIS fitting procedure under 10% white light illumination.

Voltage (V _{RHE})	Sb ₂ Se ₃ -L (ohm cm²)	Sb ₂ Se ₃ -H (ohm cm²)
0.297	46.702	30.229
0.262	46.512	32.6306
0.227	44.65	31.4792
0.192	43.092	39.406
0.157	41.192	57.722
0.122	39.178	91.998
0.087	37.4946	154.622
0.052	39.862	252.852
0.017	50.426	348.27
-0.018	68.742	513.76
-0.053	91.884	679.44
-0.088	113.62	797.24
-0.123	120.688	854.62
-0.158	113.164	961.78
-0.193	109.744	968.24
-0.228	87.552	967.1
-0.263	77.9	898.32
-0.298	70.984	901.74
-0.333	58.596	840.56
-0.368	51.262	772.16
-0.403	50.502	694.26

Figure S16. The bandgap of the Sb₂Se₃-L and Sb₂Se₃-H samples determined from IPCE measurements.

For an ideal junction, the external quantum efficiency (EQE) can be approximated by the following equation:¹

$$EQE = 1 - \frac{\exp(-\alpha W)}{1 + \alpha L_n}$$
(1)

where α is the absorption coefficient, W is the width of the space charge region and L_n is the minority carrier diffusion length. For $\alpha L_n < 1$, implying a very short L_n , Equation (1) simplifies to:

$$EQE = 1 - \exp(-\alpha W)$$
(2)

For indirect transitions, the dependence of absorption coefficient on photon energy is described by:

$$\alpha h v \propto (h v - E_g)^2 (3)$$

Thus, a plot of $[E \times (E - E_g)]^2$ against E can be used to extract the band gap E_g .

Figure S17. XPS measurements of the valence band edge of Sb₂Se₃-L and Sb₂Se₃-H thin films.

Figure S18. The Tauc plot derived from the transmittance data of a 100 nm thick TiO_2 film deposited on glass substrate by ALD.

Figure S19. (a) Band alignments of the (a) Sb₂Se₃-L/TiO₂ and (c) Sb₂Se₃-H/TiO₂ devices.

The bandgaps of the Sb₂Se₃-L and Sb₂Se₃-H devices were determined to be 1.17 eV using the Kubelka-Munk function. The Fermi level (E_F) positions of both devices with respect to the vacuum level were determined by the flat band potential. The flat band potentials obtained from Mott-Schottky plots indicate the difference between the Fermi levels of Sb₂Se₃ and the redox potential of the H₂SO₄ electrolyte solution (pH 0, E_{H^+/H^2} , 0 V_{RHE}). The work functions of Sb₂Se₃-L and Sb₂Se₃-H were calculated to yield values of 4.72 V and 4.84 V, respectively. XPS measurements revealed energetic distances from the E_F to the valence band maximum (VBM) of 0.54 eV for Sb₂Se₃-L and 0.48 eV for Sb₂Se₃-H. Based on these measurements, the VBM positions were determined to be 5.26 eV for Sb₂Se₃-L and 5.32 eV for Sb₂Se₃-L and 4.15 eV for Sb₂Se₃-H. According to this, the band alignments of the Sb₂Se₃-L/TiO₂ and Sb₂Se₃-H/TiO₂ interfaces were constructed.

References

1 G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg and L. M. Peter, *Progress in Photovoltaics: Research and Applications*, 2009, **17**, 315–319.