Supporting Information

Atomic-Scale Visualization of Single Atom Formation in Metal-Organic Frameworks

Kai-Yuan Hsiao,^a Yi-Dong Lin,^a Yu-Ru Lin,^a Ching-Wei Chin,^d Chun-Hui Lin,^a Ruei-

Hong Cyu,^a Yan-Gu Lin,^{bc} Yu-Lun Chueh,^{adef} and Ming-Yen Lu*ad

^aDepartment of Materials Science and Engineering, National Tsing Hua University,

Hsinchu 300, Taiwan

^bScientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan

^cDepartment of Materials Science and Engineering, National Yang-Ming Chiao Tung University, Hsinchu 300093, Taiwan

^dCollege of Semiconductor Research, National Tsing Hua University, Hsinchu 30013, Taiwan

^eDepartment of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan ^fDepartment of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea

*E-mail: <u>mylu@mx.nthu.edu.tw</u>

Synthesis of Fe-ZIF

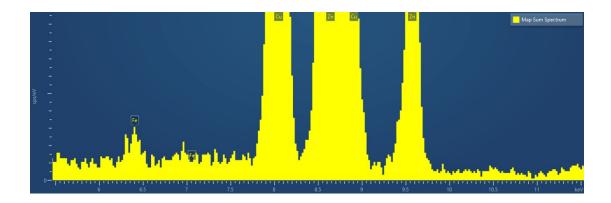
 $Zn(NO_3)_2$ (0.5904 g) and 2-methylimidazole (2-mIM, 1.3020 g) were dissolved individually in MeOH (20 mL) under sonication. Then, Fe(acac)₃ (0.07 g) were added to $Zn(NO_3)_2$ solution under sonication. The solutions of 2-mIM and $Zn(NO_3)_2$ solution were mixed and stirred for 5 min, followed by placing at room temperature (RT) for 12 h. The resulting precipitation was collected, washed with MeOH (at least three times), and dried at 80 °C for 12 h.

Synthesis of Fe-400, Fe-900, and Fe-1100

The ZIF-8 powders were placed in Al_2O_3 crucibles, loaded into a tube furnace, heated to 400 °C, 900 °C and 1100 °C (at 5 °C/min) under an Ar flow and held for 3 h, for Fe-400, Fe-900, and Fe-1100, respectively. Then, the furnaced was cooled to RT naturally.

Material Characterization

The morphologies, compositions, and phases of the materials were investigated using scanning electron microscopy (SEM, Hitachi SU8010), X-ray diffractometry (XRD, Bruker D2 phaser) with Cu Kα radiation, and high-resolution X-ray photoelectron spectrometry (HR-XPS, ULVAC-PHI PHI 5000 Versaprobe II). TEM and scanning


TEM (STEM) images were recorded using a spherical-aberration-corrected fieldemission transmission electron microscope (Cs-corrected TEM, JEOL ARM-200FTH) at an accelerating voltage of 200 kV. Elemental distributions were measured using equipped energy dispersive spectrometry (EDS).

In situ STEM observation

In situ STEM observation was performed using the JEOL ARM-200FTH microscope operated at 200 kV. The Fe-ZIF particles were dispersed in EtOH. A drop of the resulting solution was placed on a dedicated E-chip and dried at 60 °C. The E-chip was assembled in an in situ heating holder (Fusion, Protochips). To minimize the effect of electron beam irradiation, the current density was maintained below 16 pA/cm².

Computational method

The density functional theory (DFT) calculations were utilized the Vienna ab initio simulation package (VASP) with plane-wave basis sets and the projector augmentedwave (PAW) method.¹⁻⁴ The exchange-correlation potential followed the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) parametrization,⁵ supplemented by Grimme's DFT-D3 model for van der Waals corrections.⁶ A cutoff energy of 520 eV and a Γ -centered Monkhorst-Pack mesh of 2 × 2 × 1 were employed for Brillouin-zone integration.⁷ In cases involving strongly correlated Fe atoms, a spin-polarized DFT+U correction with U = 5.3 eV was applied. Structural relaxation continued until forces on each atom were less than 0.01 eV/Å, achieving an energy convergence threshold of 10⁻⁵ eV. Optimization ensured structures reached their minimum energy states. To ascertain optimized diffusion paths of [Fe(acac)]²⁺ molecules (with one and three) on surfaces, the climbing-image nudged elastic band (CI-NEB) method utilized seven images per calculation.⁸

Figure S1. EDS spectrum of Fe-ZIF confirms the successful encapsulation of Fe species within the ZIF framework.

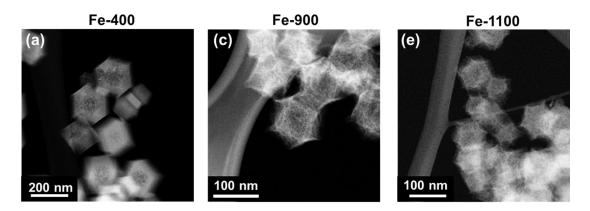


Figure S2. HAADF-STEM images of (a) Fe-400, (b) Fe-900, and (c) Fe-1100.

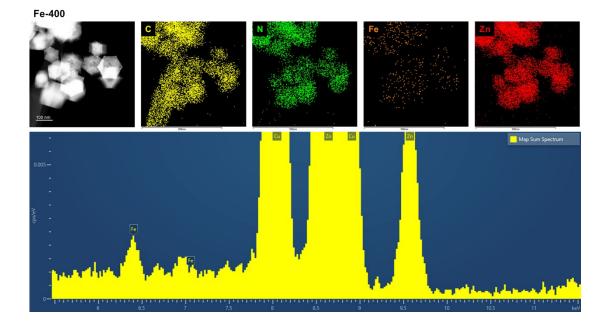


Figure S3. EDS elemental mapping and corresponding spectrum of Fe-400.

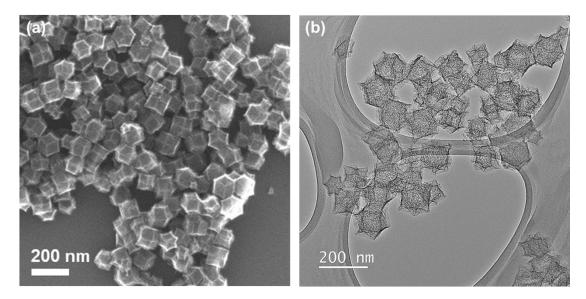


Figure S4. (a) SEM image, (b) TEM image Fe-900.

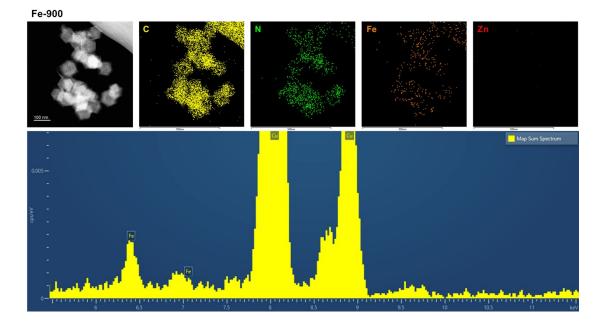


Figure S5. EDS elemental mapping and corresponding spectrum of Fe-900.

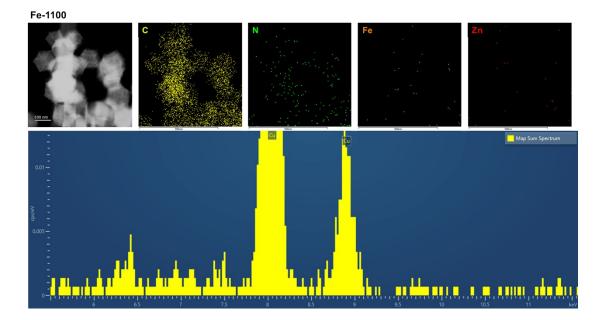
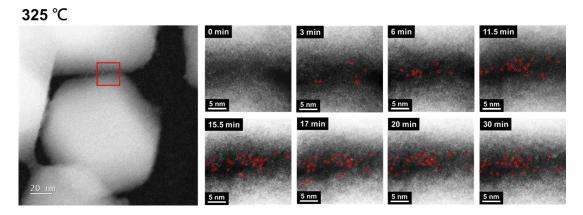
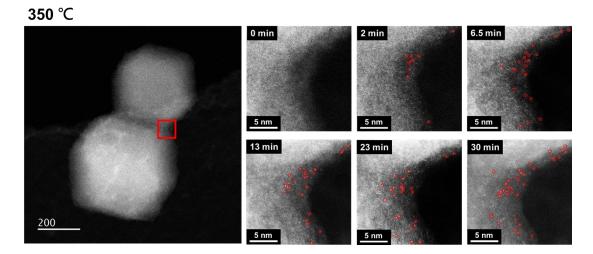


Figure S6. EDS elemental mapping and corresponding spectrum of Fe-1100.

	1 6 7 7 7 7		,	5	
	Fe-ZIF	Fe-400	Fe-900	Fe-1100	
С	66.4%	73.5%	94.2%	97.3%	
Ν	23.2%	21.9%	5.7%	2.7%	
Zn	10.3%	4.5%	0.0%	0.0%	
Fe	0.1%	0.1%	0.1%	0.0%	


Table S1 Atomic percentages of C, N, Zn, and Fe, as determined by EDS.

	N/C (EDS)	N/C (XPS)
Fe-ZIF	0.349	0.399
Fe-400	0.298	0.387
Fe-900	0.061	0.043
Fe-1100	0.028	0.014


Table S2 The ratios of N and C content of the samples from EDS and XPS.

	Fe content (At %)
Fe-ZIF	0.25
Fe-400	0.39
Fe-900	3.58
Fe-1100	0.02

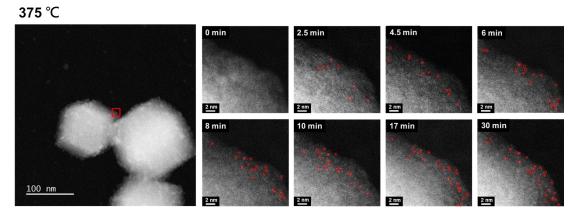

Table S3 The Fe content of the samples from XPS analysis.

Figure S7. Time-sequenced in situ STEM images of the single atom formation during pyrolysis at 325 °C for 30 minutes.

Figure S8. Time-sequenced in situ STEM images of the single atom formation during pyrolysis at 350 °C for 30 minutes.

Figure S9. Time-sequenced in situ STEM images of the single atom formation during pyrolysis at 375 °C for 30 minutes.

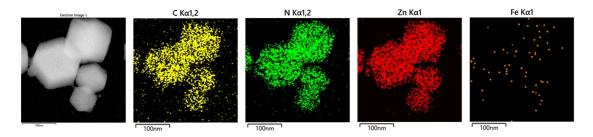


Figure S10. EDS elemental mappings of C, N, Zn, and Fe after pyrolysis at 325 °C.

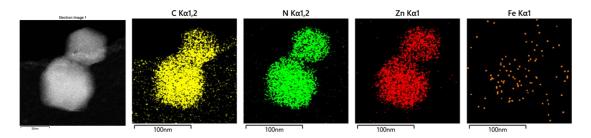


Figure S11. EDS elemental mappings of C, N, Zn, and Fe after pyrolysis at 350 °C.

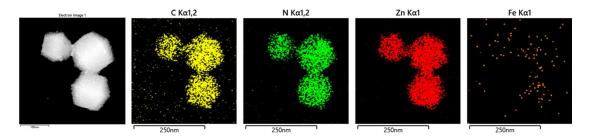
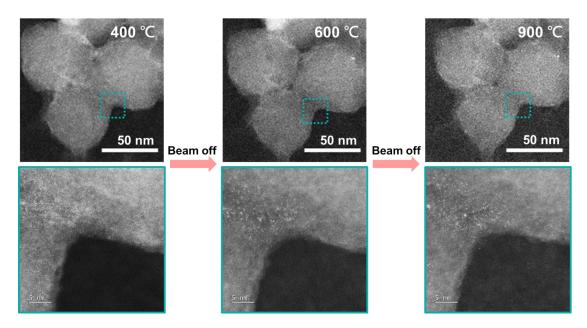
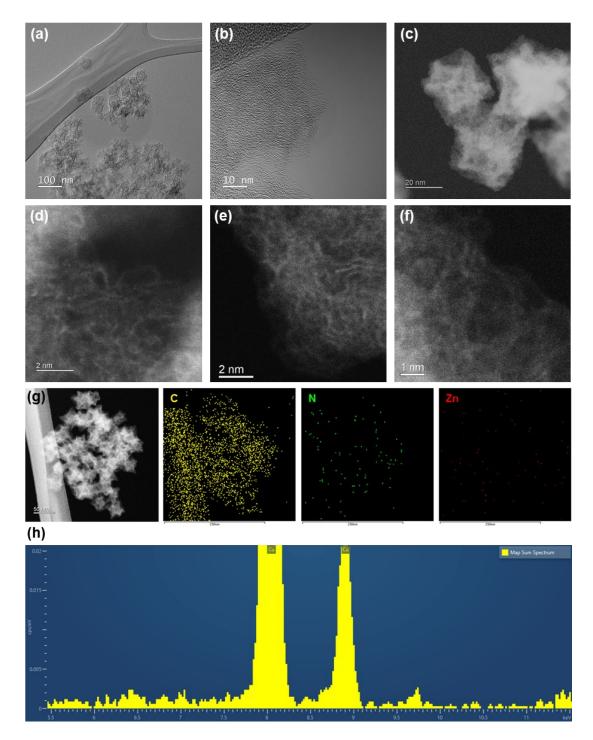
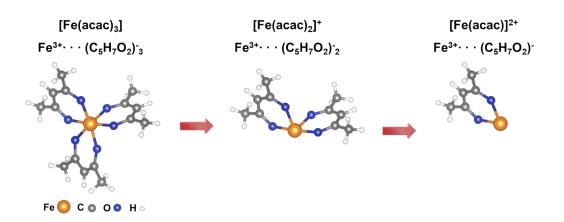


Figure S12. EDS elemental mappings of C, N, Zn, and Fe after pyrolysis at 375 °C.


Figure S13. In situ STEM images during pyrolysis without beam irradiation effect.

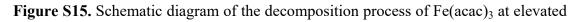


Figure S14. (a) TEM image, **(b)** high-resolution (HR)TEM image, **(c)** HAADF-STEM image, **(d-f)** HR HADDF-STEM images, and **(e)** EDS elemental mappings and **(h)** the corresponding spectrum of the pristine ZIF-8 derived samples after pyrolysis at 900 °C. The results confirm that Zn species were completely evaporated after pyrolysis at 900 °C and no SA is observed in the carbon matrix.

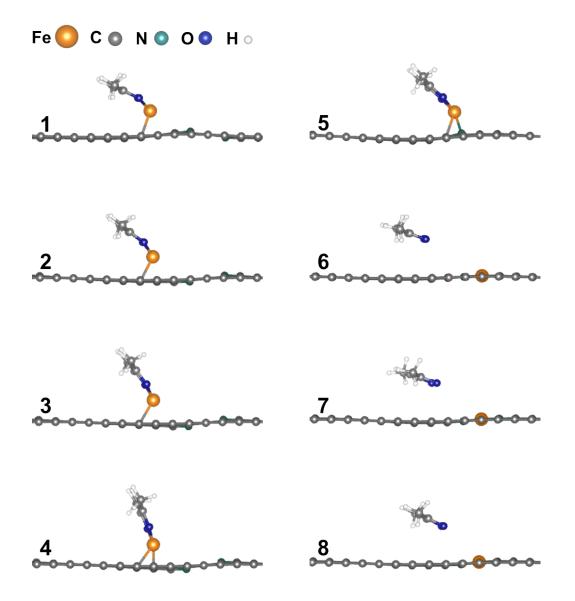
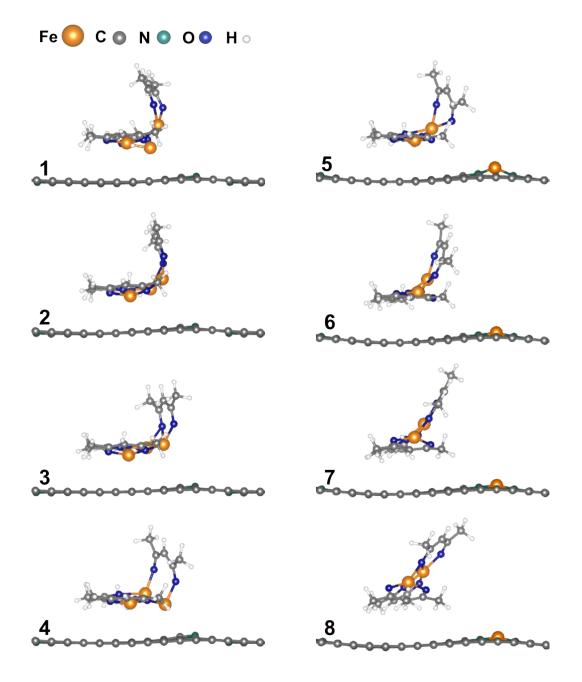

	k 1	k ₂
	(µm ⁻² ·min ⁻¹)	(μm ⁻² ·min ⁻¹)
400 °C	68027	7608
375 °C	26263	3529
350 °C	18247	1560
325 °C	7177	815

Table S4 k_1 and k_2 value at various pyrolysis temperatures.



temperatures.

Figure S16. Side view of the atomic structure illustrated the atomization pathway for dispersed [Fe(acac)]²⁺.

Figure S17. Side view of the atomic structure illustrated the atomization pathway for clustered [Fe(acac)]²⁺.

Reference

- 1. G. Kresse and J. Furthmüller, *Physical review B*, 1996, **54**, 11169.
- 2. P. E. Blochl, *Physical Review-Section B-Condensed Matter*, 1994, **50**, 17953-17979.
- 3. W. Kohn and L. J. Sham, *Phys. Rev.*, 1965, **140**, A1133.
- 4. P. Hohenberg and W. Kohn, *Phys. Rev*, 1964, **136**, B864.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *The Journal of chemical physics*, 2010, 132.
- 7. H. J. Monkhorst and J. D. Pack, *Physical review B*, 1976, **13**, 5188.
- G. Henkelman, B. P. Uberuaga and H. Jónsson, *The Journal of chemical physics*, 2000, **113**, 9901-9904.