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Table S1. The (0 0 2) position and d-spacing of Ti;C,Ty Mxene synthesised using different

techniques.

Method Etchant Temperatur | Duratio | (0 0 2) | d- c-LP | Referenc

e n peak | spacin | (A) |e

positio | g (A)
n

Molten CuCl,:KCI:Na | 680 °C 24 8.07° 10.94 1
Salt Cl hours
Molten CuCl,:KCI:Na | 700 °C 10 hour 11.07 |22.1 |2
Salt Cl : 10 min 3
(Insitu
preparatio
n of MAX
and
etching)
Molten SnF, 550 °C 6 hours | 9.4° 3
Salt
Molten CuCly:KCI:Na | 700 °C 40 min | 7.94° 11.1 4
Salt Cl
Acid 20% HF Room 11 89° 3
etching temperatur | hours

e
Insitu  HF | 6M HCLLiF 40 °C 40 6.9° 6
etching hours
method
HF Conc. HF Room 10 - - - 7
etching temperatur | hours

e
Wet- Fluoride salts | Room 12 to 8
etching Temperatur 15
alkalizatio e
n strategy
Acid HF Room 24 9° 19.62 ?
solution temperatur | hours
etching e
Acid LiF:HCI 60 °C 50 7.67° | 22.05 ?
solution hours
etching
Acid FeF;:HCl 60 °C 25 8.01° |23.02 ?
solution hours
etching
Molten KF:NaF:oxalic | 400 °C 10 6.9 25.7 | This
Salt acid dihydrate hours 2 work




Figure S1. SEM images of MSTC-00 at different magnifications.
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Figure S2. High resolution XPS of (A) Ti 2p, (B) Al 2p, (C) C Is and (D) O 1s of Ti;AIC,
MAX phase.
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Figure S3. High resolution XPS of (A) Ti 2p, (B) Al 2p, (C) C 1s and (D) O 1s of MSTC-00.
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Figure S4. (A) Nyquist plots and (B) cyclic voltammograms of (a) commercial Ti;C, and (b)
MSTC-0X.
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Figure S5. SEM images of (A) activated 3DE and (B) TC-3DE. (C) Bode plots of TC-3DE

(inset: equivalent circuit), and (D) current density versus scan rate curves of TC-3DE in 1 M
H,SO, against Ag/AgCl (3M KCl).
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Figure S6. (A) log i versus log v curves of TC-3DE supercapacitors and (B) cyclic

voltammograms of symmetric TC-3DE cell for 5000 cycles (cycle (a) 279, (b) 500, (¢) 1000,
(d) 5000,



Table S2. Performance of 3D printed Ti;C, Ty based supercapacitors.

Material Electrolyte | Specific Energy Power Reference
(Gel) capacity Density density
2D Ti;C, T, | PVA/H,SO |1 F cm? at | 56 mW h |[249 W em | 10
microsupercapcitor | 4 2mV S! cm3 3,
MSC-1
3D Printed Ti3C,T, | PVA/H,SO | 70 Fgl at 1 | 101 uWh | 0.299 mW | !l
MXene/Cellulose | 4 mA cm2 cm 2 cm 2
Nanofiber
Ti3C, Ty coated | Li- 908 mF/g! 12
carbon nanofiber | G3]TFSI at
structural 0.5mA g!
supercapcitors
WCF-ZnCoSe- 1455F g! |2.02 Wh|36.75 Wkg |13
Mxene kg! !
WCF- 1936 Fg! |2.69 Wh|4320 Wkg |13
N@ZnCoSe- kg! !
mxene
MXene@PTC-12 | PVA/H,SO 14
h 4
TC-3DE Xanthan 30 Fg'! 1.767 20.64 Wkg | This work
supercapacitors gum/H,SOy4 Whkg! !
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Figure S7. Cyclic voltammograms of sodium composite in (a) 1M H,SO,4 and (b) recycled 1M

sodium lactate. (B) photograph of a glucometer powered up using SIB-a cells.
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Figure S8. (A) XRD pattern, (B) SEM image of 3DE-CB (carbon black extracted from fresh
PLA/Graphene filament). (C) Nyquist plot and (D) GCD curves (at 0.3C rate) of SIB-c cells.
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Figure S9. GCD curve of (A) SIB-a and (B) SIB-b cells for 500 cycles at 1C-rate.
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