Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Hollow but Perforated C/Co/Mo₂C Cubes Enhance Electromagnetic Absorption

Xinghang Duan¹, Qiaolin Li¹, Tiantian Cao¹, Shengxiang Xiong¹, Gang Chen¹,

Hongtao Guan¹, Chengjun Dong^{1*}, and Zongyou Yin^{2*}

1 School of Materials and Energy, Yunnan University, Kunming 650091, China

2 Research School of Chemistry, Australian National University, Canberra, ACT

2601, Australia

^{*} Corresponding Author: dongcj@ynu.edu.cn (C. J. Dong), zongyou.yin@anu.edu.au (Z. Y. Yin)

Fig. S1. Raman spectra of C/Mo_2C with/without-template, $C/Co/Mo_2C$ -0.4 composites.

Fig. S2. XRD patterns of C/Mo₂C with/without-template, C/Co/Mo₂C with ratio of Zn^{2+} : Co²⁺= 1:1 and Zn²⁺: Co²⁺= 0:1 and Zn/Co(C₄O₄)(H₂O)₂ template.

Fig. S3. SEM images of (a) $Zn/Co(C_4O_4)(H_2O)_2@PPy/Mo_2O_4^{2-}$ precursor, (b) $C/Mo_2C-0.2$, (c) $C/Co/Mo_2C-0.4$, (d) $C/Co/Mo_2C-0.6$ composites.

Fig. S4. SEM images of (a) $Zn/Co(C_4O_4)(H_2O)_2@PPy/Mo_2O_4^{2-}$ precursor, (b) C/Mo_2C without template, (c) $C/Co/Mo_2C$ (Zn^{2+} : $Co^{2+}= 1:1$), (d) $C/Co/Mo_2C$ (Zn^{2+} : $Co^{2+}= 0:1$) composites.

Fig. S5. (a, b) TEM and (c, d) HRTEM images of C/Mo₂C without template.

Fig. S6. EDS spectrum of (a) $C/Co/Mo_2C-0.2$, (b) $C/Co/Mo_2C-0.4$, (c) $C/Co/Mo_2C-0.6$ composites and (d) elemental content comparison chart.

Fig. S7. Full XPS spectra of C/Co/Mo₂C-0.4 composites.

Fig. S8. Hysteresis loops of C/Co/Mo₂C-0.4 composites.

Fig. S9. EM parameters of C/Mo₂C with/without-template, C/Co/Mo₂C with ratio of Zn^{2+} : Co²⁺= 1:1 and Zn²⁺: Co²⁺= 0:1: (a) ε' , (b) ε'' , (c) $\tan \delta_{\varepsilon}$, (d) μ' , (e) μ'' , (f) $\tan \delta_{u}$.

Fig. S10. 3D reflection loss properties of (a) C/Mo₂C with template, (b) C/Mo₂C without template, (c) C/Co/Mo₂C (Zn²⁺: Co²⁺= 1:1), (d) C/Co/Mo₂C (Zn²⁺: Co²⁺= 0:1).

Fig. S11. Cole-Cole semicircle of (a) C/Mo₂C with template, (b) C/Mo₂C without template, (c) C/Co/Mo₂C (Zn²⁺: Co²⁺= 1:1), (d) C/Co/Mo₂C (Zn²⁺: Co²⁺= 0:1).

Fig. S12. 2D *RL* properties, $\lambda/4$ model, and $|Z_{in}/Z_0|$ values of (a-c) C/Co/Mo₂C-0.2, (d-f) C/Co/Mo₂C-0.4, (g-i) C/Co/Mo₂C-0.6 composites.

Fig. S13. 2D *RL* properties, $\lambda/4$ model, and $|Z_{in}/Z_0|$ values of (a-c) C/Mo₂C with template, (d-f) C/Mo₂C without template, (g-i) C/Co/Mo₂C (Zn²⁺: Co²⁺= 1:1), (j-l) C/Co/Mo₂C (Zn²⁺: Co²⁺= 0:1).

Fig. S14. EM parameters of C/Co/Mo₂C-0.4 composites with different filling ratios: (a) ε' , (b) ε'' , (c) $\tan \delta_{\varepsilon}$, (d) μ' , (e) μ'' , (f) $\tan \delta_{\mu}$.

Fig. S15. 2D reflection loss properties of $C/Co/Mo_2C-0.4$ composites with different filling ratios: (a) 10 wt.%, (b) 20 wt.%.

Fig. S16. Attenuation constants (α) of C/Co/Mo₂C-0.4 composites with different filling ratios.

Fig. S17. $|Z_{in}/Z_0|$ values of C/Co/Mo₂C-0.4 composites with different filling ratio: (a) 10 wt.%, (b) 20 wt.%.

Samples	Shapes	Loading	d_1	RL_{\min}	d_2	EAB	Ref.
		(wt. %)	(mm)	(dB)	(mm)	(GHz)	£13
MoC powders	Sphere	71	1.5	-42.2	1.5	4.2	[1]
Mo_2C/C	Porous	20	3.0	-20.38	1.8	5.04	[2]
MoC _{1-x} /C	Double-shell	20	1.8	-50.55	2.0	5.36	[3]
Mo ₂ C@C	Nanorods	10	2.0	-39.0	2.0	3.1	[4]
Mo ₂ C/NC	Porous	30	1.5	-61.53	3.5	9.6	[5]
Mo ₂ C@NPC	Sphere	40	2.5	-50.6	2.5	5.4	[6]
Mo ₂ C/C NCs	Porous	20	2.6	-49.19	1.7	4.56	[7]
PL-Mo ₂ C@C	Sphere	40	1.9	-48.0	2	4.1	[8]
DS-Mo ₂ C/C	Dual-Shell	40	5.0	-22.0	1.5	4.4	[9]
S-Mo ₂ C/C	Polyhedrons	50	1.5	-60.4	1.5	4.8	[10]
FCN-Mo ₂ C	Flower-like	10	2.3	-36.8	2.9	7.04	[11]
H-MoC/NC	Hollow	15	2.0	-41.2	2.0	5.2	[12]
FeNi ₃ /Mo ₂ C	Fibers	30	2.0	-51.5	2.0	5.1	[13]
Ni/Mo ₂ C-C	Nanowires	15	2.7	-55.91	2.7	3.5	[14]
Mo ₂ C/Co/C	Nanorods	30	3.0	-48.0	3.0	2.0	[15]
Sn@Mo ₂ C/C	Double-shell	30	2.0	-52.1	2.0	6.76	[16]
Mo ₂ C@Co/C	Polyhedrons	20	2.3	-37.9	1.9	5.52	[17]
Mo ₂ C/Co/C	Nanorods	50	1.77	-54.6	2.61	4.08	[18]
Mo ₂ C/Co@C	Nanorods	35	1.7	-47.98	1.6	6.0	[19]
Mo _x C-Co/C	Porous	30	1.5	-59.69	2.09	4.08	[20]
η-MoC/Co@NC	Polyhedrons	15	2.0	-47.72	2.0	4.58	[21]
Co/NC/Mo _x C/NC	Nanoflowers	16.7	1.5	-41.27	1.5	4.88	[22]
Mo ₂ C/NC@MXene	Sphere	25	2.5	-59.36	2.5	4.6	[23]
MoO ₂ /Mo ₂ C/Mo ₂ N	Porous	60	2.0	-38.0	1.5	4.11	[24]
Co ₆ Mo ₆ C ₂ /Mo ₂ C@NC	Porous	45	1.7	-65.89	2	6.4	[25]
NiMo/MoC/NC	Flower-like	35	1.52	-70.1	1.4	4.4	[26]
Mo ₂ C/FeCo/NC	Sphere	25	2.2	-77.37	2.2	7.25	[27]
Mo ₂ C/NiFe-NC	Nanosheets	60	1.4	-51.56	1.4	3.7	[28]
H-CoNi@MoC/NC	Hollow	15	3.1	-60.05	2.5	3.52	[29]
$Mo_2C/La_06Sr_04MnO_3$	Nanorods	30	1.2	-39	1.2	3	[30]
MoO ₃ -MoC/Co@NC	Short rod-like	40	3.875	-64.3	3.875	1.78	[31]
C/Co/Mo ₂ C	Hollow tubes	15	2.0	-73.46	2.0	5.20	This work

Table S1. Comparison of C/Co/Mo $_2$ C-0.4 composites with other molybdenum carbide based composites.

(d_1 : matched thickness for minimum reflection loss, d_2 : matched thickness for maximum effective absorption bandwidth)

References

- W. Wang, G. Sun, X. Sun, M. Huang, Y. Liang, J. Bi, J. Mater. Sci.: Mater. Electron. 2021, 32, 24351.
- Y. Zhang, Y. Fang, X. Hou, J. Wen, J. Chen, S. Wang, K. Cao, W. Ye, R. Zhao, W. Wang, W. Xue, *Carbon* 2023, 214, 118323.
- [3] T. Zhao, Z. Jia, Y. Zhang, G. Wu, Small 2023, 19, 2206323.
- [4] C.-Q. Li, X. Shen, R.-C. Ding, G.-S. Wang, RSC Adv. 2019, 9, 21243.
- [5] Q. Li, L. Liu, H. Kimura, X. Zhang, X. Liu, X. Xie, X. Sun, C. Xu, W. Du, C. Hou, J. Colloid Interface Sci. 2024, 655, 634.
- [6] Z. Wu, C. Jin, Z. Yang, R. Che, Carbon 2022, 189, 530.
- [7] S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, Y. Du, Nanoscale 2018, 10, 6945.
- [8] Y. Wang, X. Han, P. Xu, D. Liu, L. Cui, H. Zhao, Y. Du, Chem. Eng. J. 2019, 372, 312.
- [9] X. Deng, Y. Wang, L. Ma, Z. Li, Z. Chen, X. Lv, Y. Chang, Y. Liu, J. Shi, in *Int. J. Mol. Sci.*, Vol. 2022, 23.
- [10] Y. Wang, C. Li, X. Han, D. Liu, H. Zhao, Z. Li, P. Xu, Y. Du, ACS Appl. Nano Mater. 2018, 1, 5366.
- [11] L. Wang, J. Lu, J. Zhang, J. Zhu, J. Colloid Interface Sci. 2023, 641, 729.
- [12] W. Huang, W. Gao, S. Zuo, L. Zhang, K. Pei, P. Liu, R. Che, H. Zhang, J. Mater. Chem. A 2022, 10, 1290.
- [13] C. Wu, K. Bi, M. Yan, J. Mater. Chem. C 2020, 8, 10204.
- [14] S. Gao, J. Feng, G.-S. Wang, B.-L. Liang, Front. Chem. 2019, 7.
- [15] Y. Wang, X. Li, X. Han, P. Xu, L. Cui, H. Zhao, D. Liu, F. Wang, Y. Du, Chem. Eng. J. 2020, 387, 124159.
- [16] X. Qian, Y. Zhang, Z. Wu, R. Zhang, X. Li, M. Wang, R. Che, Small 2021, 17, 2100283.
- [17] G. Yang, B. Wen, Y. Wang, X. Zhou, X. Liu, S. Ding, Nanotechnology 2023, 34, 185704.
- [18] B. Zhao, N. Wu, S. Yao, Y. Yao, Y. Lian, B. Li, Z. Zeng, J. Liu, ACS Appl. Nano Mater. 2022, 5, 18697.
- [19] S. Dai, B. Quan, B. Zhang, X. Liang, G. Ji, Dalton Trans. 2018, 47, 14767.
- [20] X. Duan, Z. Wang, T. Cao, Q. Li, G. Chen, H. Guan, C. Dong, J. Alloys Compd. 2024, 993, 174538.
- [21] W. Huang, J. Chen, W. Gao, L. Wang, P. Liu, Y. Zhang, Z. Yin, Y. Yang, *Carbon* 2022, 197, 129.
- [22] Y. Ge, G. I. N. Waterhouse, J. Sui, Z. Zhang, L. Yu, Synth. Met. 2022, 287, 117052.
- [23] K. Yang, Y. Cui, L. Wan, Y. Wang, M. R. Tariq, P. Liu, Q. Zhang, B. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 7109.
- [24] T. Wei, X. Zhu, J. Xu, C. Kan, D. Shi, Langmuir 2023, 39, 890.
- [25] Y. Ning, X. Zeng, X. Peng, X. Jiang, Z.-Y. Shen, C. Liu, R. Yu, J. Mater. Sci. Technol. 2024, 187, 15.
- [26] H. Luo, S. Lv, G. Liu, Y. Cheng, X. Ge, X. Wang, R. Gong, F. Chen, Carbon 2022, 196, 828.
- [27] N. Zhang, P. Chen, Y. Wang, M. Zong, W. Chen, Compos. Sci. Technol. 2022, 221, 109325.
- [28] X. Zeng, Y. Ning, H. Guo, N. Xie, R. Yu, Mater. Today Phys. 2023, 34, 101077.

- [29] X. Yang, W. Gao, J. Chen, X. Lu, D. Yang, Y. Kang, Q. Liu, Y. Qing, W. Huang, Chin. J. Chem. 2023, 41, 64.
- [30] J. Huang, I. Mahariq, S. M. Kumar, S. Abdullaev, S. Kannan, N. Thi Xuan Dieu, Y. Fouad, Colloids Surf., A 2024, 689, 133664.
- [31] Y. Yin, X. Zeng, L. Xia, G. Xiong, H. Zhang, G. Wei, Colloids Surf., A 2023, 668, 131427.