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Figure S1 (a) Raman spectra of 3D Cu before and after grafting PS-OH on 3D Cu. The
characteristic peaks of PS at 2850 cm™!, 2900 cm™!, and 3050 cm™! are clearly seen.! (b) Photographs
showing the effect of the PS brush on the adhesion of PS-5-P2VP on 3D Cu. In the absence of the
PS brush, the PS-h-P2VP film delaminated from pristine Cu during ethanol swelling (top images).
However, no delamination of the PS-5-P2VP film occurred on PS-Cu (bottom images), indicating
that PS grafting is essential for a good adhesion of PS-5-P2VP with 3D Cu. (all scale bars: 1.5 cm)
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Figure S2 Comparison of X-ray photoelectron spectroscopy (XPS) N 1s spectra for PS-b-P2VP
and Ni(OH)>@PS-b-P2VP. A significantly reduced N peak corresponding to the pyridinic nitrogen

of P2VP is observed for Ni(OH)@PS-b-P2VP due to the coverage by Ni(OH),.



Figure S3 FE-SEM images of 3D Cu corresponding to different feeding amounts of PS-5-P2VP.
The loaded PS-b-P2VP shown in (a), (b), (¢), and (d) correspond to bf-mG-2, bf-mG-11, bf-mG-
19, and bf-mG-32, respectively, after conversion to m-G. (all scale bars : 500 pm)
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Figure S4 (a) TEM image and EELS mapping of m-G. The EELS mapping indicates that the
elements C, N, and Ni elements are uniformly distributed within m-G, where the nitrogen
originates from the pyridinic group of P2VP. (b) XPS survey spectrum. Enlarged (c) C 1s and (d)
N 1s spectra. Meanwhile, the enlarged C 1s and N 1s spectra in Figure S4b shows that the bf-mG
is primarily composed of sp? carbon, along with doped nitrogen atoms.
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Figure S5 Characterization of m-G powder. (a) FE-SEM image of m-G powder (scale bar : 50 um,
and inset : 300 nm), (b) Raman spectrum, and (c) Nitrogen adsorption-desorption isotherm curve
(inset: pore size distribution). The morphology and degree of graphitization are similar to those in
m-G@3D Cu.
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Figure S6 Capacity retention of bf-mG-2 and b-mG-2. During solid electrolyte interphase (SEI)

formation in early cycles, the capacity retention of both bf-mG and b-mG decrease rapidly and
stabilize afterwards. Capacity retention of bf-mG-2 is higher than b-mG-2.
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Figure S7 FE-SEM images of bf-mG-2 and b-mG-2: (a) bf-mG-2 before cycling and after 10
cycles at a current density of 0.33 A gl (b) b-mG-2 before cycling and after 10 cycles at a current
density of 0.33 A g! (Scale bar =2 pm).

bf-mG-2 formed a porous SEI structure due to uneven SEI formation (Figure S7a). In contrast,
for b-mG-2, a uniform and dense SEI was formed after 10 cycles due to the presence of a binder
(Figure S7b). The dense SEI might hinder Li-ion transport to the m-G, whereas the porous SEI
structure facilitates Li-ion transport to the m-G.
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Figure S8 Capacity retention comparison of bf-mG with three different areal mass loading of m-
G (11 mg cm?, 19 mg cm, and 32 mg cm?). Capacity retention is similar regardless of the areal
current density and areal mass loading.



Figure S9 FE-SEM images of the bf-mG-32 after two different charge/discharge cylclings at a
current density of 11 mA cm?: (a) after 10 cycles (scale bar = 500 pm), and (b) the magnified view
(scale bar = 10 um), along with a high-resolution inset (scale bar = 100 nm). (c¢) after 100 cycles
(scale bar =500 um), and (b) the magnified image (scale bar = 10 um), along with a high-resolution
inset (scale bar = 100 nm).

Figure S9(a-b) presents FE-SEM images of bf-mG-32 after 10 cycles. After 10 cycles, the loaded
m-G retained its mesoporous structure due to the formation of substantial SEI layers. The
formation of SEI in a wide area, facilitated by the large surface area of m-G, preserves its porous
structure and thus enables efficient Li-ion transport. Even after 100 cycles, although the m-G
displayed a slightly swollen morphology, it is stably attached to the 3D Cu framework without
detachment (Figure S9c), ensuring effective electron transport to the loaded m-G. Additionally,
while the mesopores on the m-G surface were more blocked compared to those obtained after 10
cycles (Figure S9d), the mesoporous structure retained, indicating that effective Li-ion transport
can be maintained even after prolonged cycling.
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