Supplementary information

Potential of Na₃AlF₆ as solid electrolyte for all-solid-state Na

batteries

Reona Miyazaki^{*a}, En Yagi^b, Yusuke Harazono^b, Natsuki Ito^b, Toshihiro Yoshida^b and Takahiro Tomita^b

a. Department of Physical Science and Engineering, Graduate School of Engineering,

Nagoya Institute of Technology, Aichi 466-8555, Japan

b. NGK INSULATORS, LTD., 2-56 Suda-cho, Mizuho, Nagoya 467-8530, Japan

Figure S1 (Top) XRD pattern of as-prepared Na_3AlF_6 and (Bottom) theoretical pattern for Na_3AlF_6 (P2₁/n).

Figure S1 represents the XRD pattern of Na_3AlF_6 prepared by melting at 1050°C for 10 min. Diffraction pattern was almost coincidence with that for ideal Na_3AlF_6 (P2₁/n). Theoretical pattern was simulated by using VESTA software [*J. Appl. Cryst.* (2011). 44, 1272-1276].

As shown in Figure S2(a), MSD of Na⁺ was still below $0.3A^2$ after 1000ps for stoichiometric Na₃AlF₆. The continuous increase of MSD was not confirmed by temperature rising, indicating that Na⁺ conductivity of Na₃AlF₆ is extremely low without Na⁺ vacancies. On the other hand, slight increase in MSD for F⁻ was confirmed (Figure S2(c)). The MSF of F⁻ can be attributable to the hopping of F⁻ around AlF₆³⁻. As shown in Figure S2(d), F⁻ ions exchanged the vertex of AlF₆³⁻ octahedra with time. Such a local hopping of F⁻ does not contribute for the long-range diffusion. Hence, in the stoichiometric Na₃AlF₆, neither Na⁺ nor F⁻ contribute for the ion conduction and the observed ion dynamics is the F⁻ hopping around AlF₆³⁻.

Figure S2(a)-(c): MSDs calculated between 400-1000K for stoichiometric Na_3AlF_6 without vacancies. (d): Trajectory mapping of F⁻ around AlF_6^{3-} octahedra at 1000K.

The default monoclinic structure (P2₁/n) includes 456 atoms (Na = 120, Al = 24, Si = 24, F = 288). The calculated MSD of Na⁺ at 700-1000 K (Figures S3(a)-(d)) increased with temperature, indicating long-range hopping of Na⁺ in monoclinic Na₃AlF₆. On the other hand, the MDS of F⁻ remained unchanged above 60 ps. The MSD of F⁻ was not further increased until 1000 K, with a maximum value of ~6 Å². Hence, although the F⁻ motion was facilitated, F⁻ ions did not contribute to the long-range diffusion for the case that F⁻ vacancies are not included in Na₃AlF₆·Na₂SiF₆.

Figure S3: MSD of Na(red), Al (blue), Si (black) and F (magenta) of Na₃AlF₆·Na₂SiF₆ without F⁻ vacancies at (a) 700K, (b) 800K, (c) 900K, and (d) 1000K. Note that MSDs of Si are almost overlapped with those of Al.

Figure S4: MSD of Na(red), Al (blue), Si (black) and F (magenta) of Na₃AlF₆-Na₂SiF₆ (Si 25 mol%) at (a) 700K, (b) 800K, (c) 900K, and (d) 1000K. F⁻ vacancies were included in a similar manner with the simulation of Na₃AlF₆·Na₂SiF₆ (Si 50 mol%). Note that MSDs of Si are almost overlapped with those of Al.

Figure S5: Charge-discharge curves of the cell using (a) Na_3Sn and (b)(c) $NaSn_3$ alloy anodes. Black, red, blue and green lines represent the results of first, second, third and fourth cycles, respectively. The measurement current was 50 μ A for (a) and (b) while the charge-discharge rate was decreased to 20 μ A for (c)

The cell fabrication procedures are same with those of Na/NaCrO₂ cell excepting that the Na-Sn alloy is used as anode. After pressing the solid electrolyte and NaCrO₂ composite together, a given molar ratio of Na and Sn tip was placed on the pellet opposite from NaCrO₂ composite side. The cell was finally screwed at 6 Nm. The charge-discharge measurement was performed at 60°C. Figure S5(a) represents the charge-discharge results using Na₃Sn anode. Charge-discharge current was 50 μ A. The cell underwent the voltage disturbance during charging, which was more significant than that of Na/NaCrO₂ cell (Figure 8). Figure S5(b) and (c) are the results for the cell with NaSn₃ anode. The capacities were drastically decreased under 50 μ A (Figure S5(b)). When the charge-discharge discharge current was decreased to 20 μ A, capacities were rather increased. However, the

voltage disturbance was still observed during charging. Finally, the capacities were decreased to 10 mAh/g at 3rd cycle.