Supporting Information

Experimental Section

Catalyst Preparation

n%ReO₂@TiO₂ (n = 0.1, 0.5, 1, 2 and 5) photocatalysts were prepared by impregnation. Certain amount of NH₄ReO₄ (HEOWNS, 99%) was dissolved in 20 mL deionized water. After adding 0.5 g TiO₂ (Macklin, 99.99%) into the Re-containing solution, the mixture was continuously stirred at 333 K for 4 h and then dry at 383 K overnight to remove the solvent. The collected powder was then calcined in air at 773 K for 4 h and reduced in 10 vol% H₂/Ar at 773 K for 3 h. The obtained photocatalysts were labeled as n%ReO₂@TiO₂. H₂-TiO₂ was prepared using the same method with that to prepare n%ReO₂@TiO₂ but without the addition of NH₄ReO₄.

Characterization

X-ray diffraction (XRD) analyses were performed on a Shimadzu XRD-6000 diffractometer with Cu Kα radiation. The X-ray tube was operated at 40 kV and 40 mA. All diffraction patterns were recorded in a range from 10° to 80° at a scanning rate of 5°·min⁻¹. N₂ adsorption-desorption isotherms were obtained at 77 K on a Micromeritics ASAP 2460 analyzer. Specific surface area is determined by using the Brunauer Emmett-Teller (BET) method at 77.3 K, respectively. Steady state photoluminescence (PL) emission spectra were detected by an Edinburgh FLS980 PL spectrometer with an excitation wavelength of 365 nm. Time-resolved fluorescence decay spectra were recorded with the time-correlated single photo counting mode. The average fluorescence lifetime (Δ_{avo}) was determined based on the fitting of double exponential function. X-ray photoelectron spectroscopy (XPS) was conducted in a Shimadzu Axis Supra+ spectrometer equipped with a monochromatic AI K α (1486.6 eV) radiation generated from the electron beam operated at 150 W. The spectra were referenced to the C 1s peak at 284.8 eV. Electron paramagnetic resonance (EPR) spectroscopy was obtained on a Bruker E500 electron magnetic resonance spectrometer at room temperature.

Temperature-programmed desorption of oxygen (O₂-TPD) and methane (CH₄-TPD)

was carried out in a Microtrac BELCat II chemisorption analyzer. Typically, 50 mg sample was loaded in a U-shaped quartz tube and pre-treated with flowing hydrogen (10 vol.%) at 773 K for 1 h. After cooling down to 293 K under argon flow, the sample was saturated with O_2 or CH_4 for 1 h and then purged with argon to remove the physically-adsorbed O_2 or CH_4 . Lastly, the whole system was heated to 1073 K at a rate of 10 K·min⁻¹.

Photocurrents were measured on a CHI760E electrochemical workstation in a Na₂SO₄ solution (0.1 M) using a 300 W Xe-lamp, with a constant potential of 0.2 V vs. reversible hydrogen electrode (RHE). Solution and light source used for measuring photocurrents are similar to those for photocatalytic reactions. The electrochemical workstation includes three electrodes. A Pt plate and an Ag/AgCl electrode were used as the counter electrode and reference electrode, respectively. For preparing the working electrode, with a surface area of 1.0 cm² exposed to electrolyte, 5 mg sample was first dispersed in the mixture of 900 μ L ethanol and 100 μ L 30 wt% Nafion solution under ultrasonication. Then, 100 μ L suspension was dropped onto the electrode and dried at room temperature.

Computation Details

Density functional theory (DFT) calculations for cluster structures were performed by using Gaussian 16¹ and ORCA² programs. Initially, the B2GP-PLYP³ function including DFT-D3 dispersion correction^{4, 5} was used for structural optimization and frequency analysis. For geometry optimization, the def2-TZVP^{6, 7} basis set was employed for all atoms. More accurate single-point energies were obtained at DLPNO-CCSD(T)/def2-TZVPP level of theory. Stationary points were optimized without symmetry constraint, and their nature was confirmed by vibrational frequency analysis. Natural bond orbital (NBO)⁸⁻¹³ were performed to obtain further information. The graphics were generated using Chemcraft program. Corresponding density of states (DOS) analysis were carried out with Multifwn¹⁴ programs.

Oxygen adsorption energy (ΔE) for ReO_x^+ (x = 0 - 3) clusters is calculated as $\Delta E = E(\text{ReO}_x^+ \cdots O_2) - E(\text{ReO}_x^+) - E(O_2)$, where $E(\text{ReO}_x^+)$ and $E(O_2)$ represents the energy of the ground state of ReO_x^+ and triplet oxygen ($^{3}O_2$).

Different components of the total interaction energy between ReO_x^+ (x = 0 - 3) clusters and O₂ were calculated at TPSSh¹⁵/def2-TZVP level of theory by using sobEDA¹⁶. The total interaction energy (ΔE_{tot}) is decomposed to electrostatic energy (ΔE_{ele}), exchange energy (ΔE_x), repulsion energy (ΔE_{rep}), orbital energy (ΔE_{orb}), DFT correlation energy (ΔE_{DFT}) and dispersion correction energy (ΔE_{dc}), and coulomb correlation energy (ΔE_c) is defined as the sum of DFT correlation energy and coulomb correlation energy.

Density functional theory (DFT) calculations for condensed structures were performed using package VASP5.4.1.^{17, 18} The generalized gradient approximation functional Perdew-Burke-Ernzerhof (PBE) was used for the exchange correlation functional, with the projected augmented wave (PAW) pseudopotential basis set and a cutoff energy of 450 eV.^{19, 20} The van der Waals interactions were considered using the DFT-D3 empirical correction.⁵ The electronic energy was considered self-consistent when the energy change was smaller than 10⁻⁵ eV. A geometry optimization was considered convergent when the energy change was smaller than 0.02 eV Å⁻¹. The lattice differences between the heterostructures are within 5%. Thermodynamic Gibbs free energy corrections and density of states (DOS) analysis were carried out with the aid of the VASPKIT 1.2.1 tool package.²¹ The Brillouin zone integral uses the surfaces structures of 2×2×1 Monkhorst-Pack K-point sampling for structure. The cutoff energy and K-point were selected based on convergence tests. The Gibbs free energy of the reaction intermediates was calculated using the computational hydrogen electrode model, as shown below:

 $G = E_{DFT} + ZPE - TS$

Where E is the energy obtained from DFT calculations, ZPE is the zero-point energy of the material, S is the entropy of the adsorbate, and T is the thermodynamic temperature (298.15K).

Photocatalytic measurements

The photocatalytic methane oxidation reaction tests were conducted in a 250 mL stainless steel autoclave equipped with two sapphire windows to allow light irradiation. Typically, 10 mg catalyst was dispersed in 100 mL water by ultrasonication for 5 min. Then, the mixture was added into the autoclave, and the temperature was set at 298

K. After sealing and purging with ultrapure O_2 (99.999 vol.%) for 20 min, 1 bar O_2 (purity, 99.999%) and 19 bar CH₄ (purity, 99.999%) were flowed into the autoclave. Subsequently, the solution was stirred at 800 rpm and a 300 W Xe lamp was used as the light source. The autoclave is equipped with a temperature probe and a pressure probe to measure liquid temperature and gas pressure respectively. During the reaction process, the temperature of the liquid solution was maintained at 25 ± 2 °C by turning on the heat and fan at the same time. After the reaction, the autoclave was cooled in an ice bath to a temperature below 283 K. Then the gas and liquid product were collected by bags and vacuum filtration, respectively.

AQE was then measured. In the experiment, 10mg 1.0%ReO₂@TiO₂ photocatalyst was first dispersed in 100 ml distilled water. Then the suspension was stirred and purged with ultrapure O₂ for 20 min. After flowing 1bar O₂ and 19 bar CH₄ into the reactor, the reaction was conducted for 1h with a Xe lamp as the light source equipped with a 365 nm bandpass filter. Light intensity was measured as 10.0 mW·cm⁻² by the light intensity meter (TM-207, Tenmars Electronics Co., Ltd).

$$AQE = \frac{R(electron)N_A}{ISt/E_{\lambda}} \times 100\%$$

$$E_{\lambda} = \frac{hc}{\lambda}$$

Where NA, I, S and t represent the Avogadro's constant, light intensity irradiated on the sample (10.0 mW·cm⁻²), irradiation area (12.56 cm⁻²) and reaction time (1 h), respectively; h, c and λ represent Planck's constant, the speed and wavelength of light, and then the value of E_{λ} is 5.4 × 10⁻¹⁹ J.

R(electron) stands for the number of electrons engaged in the formation of products.

$$O_{2}^{-(2e^{-}+2H^{+})} \cdot OH$$

$$O_{2}^{-(e^{-}+H^{+})} \cdot OOH$$

$$CH_{4} + \cdot OH \rightarrow \cdot CH_{3} + H_{2}O$$

$$\cdot CH_{3} + \cdot OOH \rightarrow CH_{3}OOH \rightarrow HCHO \rightarrow HCOOH$$

$$\cdot CH_{3} + \cdot OOH \rightarrow CH_{3}OOH \rightarrow CH_{3}OH$$

As shown in the above equations, the formation of CH₃OOH, CH₃OH, HCHO and

HCOOH needed 3, 5, 3 and 5 electrons, respectively. The as-produced CH3OOH, CH3OH, HCHO and HCOOH were 4.3, 1.2, 6.6 and 0.2 µmol, respectively. Therefore, AQE = $(4.3 \text{ µmol} \times 3 + 1.2 \text{ µmol} \times 5 + 6.6 \text{ µmo} \text{ I} \times 3 + 0.2 \text{ µmol} \times 5) \times 6.02 \times 10^{23} \text{ mol}^{-1} \times 100\% / (10.0 \text{ mW} \cdot \text{cm}^{-2} \times 12.56 \text{ cm}^2 \times 1 \times 3600\text{ s} / 5.4 \times 10^{-19} \text{ J}) = 2.85\%.$

For isotopic labeling experiments, 10 mg 1.0%ReO₂@TiO₂ photocatalyst was dispersed in 4 mL H₂¹⁶O or H₂¹⁸O. After the reactor being degassed for 20 min, 1 bar ¹⁸O₂ or ¹⁶O₂ and 9 bar CH₄ were injected into the reactor. After reacting for 4 h, the suspension was filtered and then the solvent was analyzed by GC-MS (Agilent 8890).

Analysis of Products

The concentrations of gas products were analyzed by gas chromatograph (GC, FuLi GC9790Plus) equipped with two flame ionization detectors (FID) and a thermal conductivity detector (TCD) with TDX-01 column. The temperature of the column box was maintained at 80 °C and the temperature of the TCD detector was set to 130 °C. The quantitative ring volume was 1 mL. The amounts of gas products were calculated by multiplying their concentrations by the volume (150 mL, under the condition of 1 bar O_2 and 19 bar CH₄).

The liquid product was analyzed by nuclear magnetic resonance spectroscopy (NMR) and the colorimetric method²². The concentration of CH₃OH, CH₃OOH and HCOOH in the liquid was quantified by ¹H NMR (Bruker AVANCE NE0 500). Typically, 600 µL liquid product was mixed with 0.1 mL internal standard solution consisted of 0.2 µL internal standard dimethyl sulfoxide (DMSO, Aladdin, 99.99%) and 5 mL D₂O. The concentration of liquid product HCHO was quantified by the colorimetric method.37 Typically, 100 mL of reagent aqueous solution was first prepared by dissolving 15 g of ammonium acetate, 0.3 mL of acetic acid, and 0.2 mL of pentane-2,4-dione in water. Then, 0.5 mL of liquid product was mixed with 2.0 mL of water and 0.5 mL of reagent solution. The mixed solution was maintained at 35 °C in a water bath and measured by UV-vis absorption spectroscopy until the absorption intensity at 412 nm did not further increase. The concentration of HCHO in the liquid product was determined by the standard curve (Figure S1).

DMPO was used as the spin-trapping agent to monitor the reactive species including

·OOH and ·OH radicals. For ·OOH radical detection, 10 mg pure TiO_2 or $1.0\%ReO_2@TiO_2$ photocatalyst was dispersed into 1 mL DMPO/methanol solution. After purging with ultrapure O₂ (99.999 vol.%) for 20 min, in situ EPR spectra were collected after 15 min light irradiation. For ·OH radical detection, 10 mg pure TiO_2 or $1.0\%ReO_2@TiO_2$ photocatalyst was dispersed in 1 mL aqueous DMPO solution. After purging with ultrapure O₂ (99.999 vol.%) or Ar (99.999 vol.%) for 20 min, in situ EPR spectra were spectra were collected after 15 min light irradiation.

Figure S1. (a) O_2 adsorption energy for ReO_x^+ (x = 0 - 3) clusters as calculated at the DLPNO-CCSD(T)/def2-TZVPP//B2GP-PLYP/def2-TZVP level of theory. Two adsorption modes of O_2 were considered: single (s) - adsorption by a single oxygen atom and double (d)- simultaneous adsorption of two oxygen atoms. The grey number represents the spin state of the complex. (b) The optimized structures of ReO_x^+ (x = 0 - 3) and corresponding structures after O_2 adsorption as calculated at the DLPNO-CCSD(T)/def2-TZVPP//B2GP-PLYP/def2-TZVP level of theory. Bond length are given in Å. Charges are omitted for the sake of clarity.

Figure S2. (a) ·OH adsorption energy for ReO_{x^+} (x = 0 - 3) clusters as calculated at the DLPNO-CCSD(T)/def2-TZVPP//B2GP-PLYP/def2-TZVP level of theory. The grey number represents the spin state of the complex. (b) The optimized structures of ReO_{x^+} (x = 0 - 3) and corresponding structures after ·OH adsorption as calculated at the DLPNO-CCSD(T)/def2-TZVPP//B2GP-PLYP/def2-TZVP level of theory. Bond length are given in Å. Charges are omitted for the sake of clarity.

Figure S3. (a) \cdot OOH adsorption energy for ReO_x⁺ (x = 0 - 3) clusters as calculated at the DLPNO-CCSD(T)/def2-TZVPP//B2GP-PLYP/def2-TZVP level of theory. The grey number represents the spin state of the complex. (b) The optimized structures of ReO_x⁺ (x = 0 - 3) and corresponding structures after \cdot OOH adsorption as calculated at the DLPNO-CCSD(T)/def2-TZVPP//B2GP-PLYP/def2-TZVP level of theory. Bond length are given in Å. Charges are omitted for the sake of clarity.

Figure S4. Frontier molecular orbital analysis of O₂, ·OH and ·OOH.

Figure S5. Decomposition of interaction energies (kJ/mol) in the $ReO_x^+ \cdots O_2$ (x = 0 - 3) structures as calculated at the TPSSh-D3(BJ)/def2-TZVP level of theory.

Figure S6. Optimized geometries of O2 adsorbed on Re, ReO_2 , ReO_3 , Re_2O_7 and Re_2O_9 surface. Bond length are given in Å.

Figure S7. (a) UV-vis absorption spectra of formaldehyde standard solution; (b) Calibration curve for quantification of HCHO by colorimetric method.

Figure S8. (a) HAADF-STEM and (b) TEM imagines of TiO_2 support.

Figure S9. TEM and HAADF-STEM images of (a-b) 0.1%ReO₂@TiO₂; (c-d) 0.5%ReO₂@TiO₂; (e-f) 2.0%ReO₂@TiO₂; (g-h) 5.0%ReO₂@TiO₂.

Figure S10. Ti 2p for $1.0\% ReO_2$ @TiO₂.

Figure S11. ¹H-NMR spectra of liquid products after photocatalytic oxidation of methane for 1h over pure TiO_2 .

Figure S12. Typic spectra of gas products after photocatalytic oxidation of methane by GC with TCD detector. Reactant O_2 , CH_4 and product CO_2 were detected.

methane for 1h over H_2 -TiO₂.

Figure S14. ¹H-NMR spectra of liquid products after photocatalytic oxidation of methane for 1h over 1.0%ReO₂@TiO₂.

Figure S15. Production and total production of oxygenates obtained at different mass of 1.0%ReO₂@TiO₂ photocatalysts with 1 bar O₂ + 19 bar CH₄ in 100 ml deionized water under Xe light irradiation.

Figure S16. Product yields and liquid product selectivity over 10 mg 1.0%ReO₂@TiO₂ catalyst with 1 bar O₂ + 19 bar CH₄ in 100 ml deionized water under Xe light irradiation during the cycle experiments.

Figure S17. XPS spectra of (a) O 1s, (b) Ti 2p, (c) Re 4f and (d) the composition of Re species for 1.0%ReO_x@TiO₂ catalyst after the cycling test experiment.

Figure S18. Product yields and liquid product selectivity at different reaction conditions: 0 mg catalyst under Xe light irradiation; 10 mg 1.0%ReO₂@TiO₂ catalyst under dark; 10 mg 1.0%ReO₂@TiO₂ catalyst under Xe light irradiation; 1 bar O₂, 19 bar CH₄ and 100 ml deionized water were used in the control reaction.

Figure S19. Product yields and liquid product selectivity over 10 mg 1.0%ReO₂@TiO₂ catalyst with 1 bar O₂ + 19 bar Ar or 1 bar O₂ + 19 bar CH₄ in 100 ml deionized water under Xe light irradiation, respectively.

Figure S20. Error analysis of product yields and liquid product selectivity over 10 mg 1.0%ReO₂@TiO₂ catalyst for three different experiments with 1 bar O₂ + 19 bar CH₄ in 100 ml deionized water under Xe light irradiation.

	NBO charge			spin density				
	Re	O ₁	0 ₂	O ₃	Re	O ₁	0 ₂	O ₃
³ O ₂		0	0			1	1	
⁷ Re⁺	1				6			
⁵ReO⁺	1.483	-0.483			4.271	-0.271		
³ ReO ₂ ⁺	1.958	-0.479	-0.479		1.945	0.028	0.028	
¹ ReO ₃ ⁺	2.091	-0.364	-0.364	-0.364				

Table S1. NBO charge and spin density of Re and O atoms for O_2 and ReO_x^+ (x = 0 - 3) clusters.

Distance(Å)	Re-O	Re-Re	
Re	-	0	
ReO ₂	2.02	3.90	
ReO ₃	1.90	3.70	
Re_2O_7	1.80	3.30	
Re ₂ O ₉	1.90	3.70	

Table S2. The distance of Re-O and Re-Re in Re, ReO_2 , ReO_3 , Re_2O_7 , Re_2O_9 structures.

Sample	BET surface area (m ² ·g ⁻¹)		
TiO ₂	8.7691		
0.1%ReO ₂ @TiO ₂	9.3618		
0.5%ReO ₂ @TiO ₂	8.9978		
1.0%ReO ₂ @TiO ₂	9.2248		
2.0%ReO ₂ @TiO ₂	8.1829		
5.0%ReO ₂ @TiO ₂	9.6192		

Table S3. BET surface area of TiO_2 , $0.1\%ReO_2@TiO_2$, $0.5\%ReO_2@TiO_2$, $1.0\%ReO_2@TiO_2$, $2.0\%ReO_2@TiO_2$ and $5.0\%ReO_2@TiO_2$.

Table S4. The comparison of liquid oxygenates yield and selectivity over 1.0%ReO₂@TiO₂ with other reported photocatalysts. All yields are converted to μ mol·g⁻¹·h⁻¹.

nhotocatalvet	oxidant	reaction conditions	liquid product	Selectivity	Ref
photocatalyst			(µmol·g ⁻¹ ·h ⁻¹)	(%)	
	O ₂	19 bar CH ₄ , 1 bar		98.4	This work
1.0%ReO ₂ @TiO ₂		O ₂ ,10mg, 1h reaction	4061.7		
		time, 25 °C			
	O ₂	19 bar CH_4 , 1 bar O_2 ,		94.5	This work
1.0%ReO ₂ @TiO ₂		2mg, 1h reaction time,	12260.9		
		25 ℃			
	O ₂	20 bar CH_4 , 1 bar O_2 , 2	2540	95	23
$Au/COO_x/11O_2$		h reaction time, 25 °C	2340		
Au _{0.75} /ZnOPd1-	0	15 bar CH_4 , 5 bar O_2 , 2	1371	99.1	24
ZSM-5	O_2	h reaction time, 25 °C	1571		
Autora/In-Oa	O ₂	20 bar CH_4 , 10 bar O_2 ,	2066 7	91.05	25
Au _{NPS} /III ₂ O ₃		3 h reaction time, 25 ℃	2000.7		
Pd_def_In_O	O ₂	19 bar CH_4 , 1 bar O_2 , 3	2006 7	99.4	26
1 4-461-111203		h reaction time, 25 °C	2330.1		
2 1%Δα/ΤίΟ ₂ (101)) O ₂	20 bar CH_4 , 1 bar O_2 ,	4035	84.6	27
2.17079/1102(101)		2h reaction time, 25 ℃	4000		
	O ₂	1 bar CH_4 , 1 bar O_2 , 30	873 95	98.9	28
		bar total pressure,	070.00		
ZnO(Zni)-350	0.	19 bar CH_4 , 1 bar O_2 ,	30/1	98.6	29
2110(2111)-550	\mathbf{O}_2	2h reaction time, 30 °C	0041		
	H ₂ O ₂ +	20 bar CH_4 , 20 bar CO ,		100	30
Pd ₁ -ZSM-5	CO	15 mL 0.6M H ₂ O ₂ , 0.5 h	1236		
		reaction time, 25 °C			
0.33 wt%	H_2O_2	0.2 bar CH ₄ , 4 mL 30		97	31
FeO /TiO		wt% H_2O_2 ,3 h reaction	760		
FeO_X/HO_2		time, 25°C			
TiOo-CoN4	H ₂ O ₂ + O ₂	8%CH ₄ , 4% O ₂ , 20mL	696.3	97.0	32
1102-031N4		1M H₂O₂, 25℃	030.0		

Reference

 Gaussian 16, R. A., M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

2. Neese, F., The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2 (1), 73-78.

3. Karton, A.; Tarnopolsky, A.; Lamère, J.-F.; Schatz, G. C.; Martin, J. M. L., Highly Accurate First-Principles Benchmark Data Sets for the Parametrization and Validation of Density Functional and Other Approximate Methods. Derivation of a Robust, Generally Applicable, Double-Hybrid Functional for Thermochemistry and Thermochemical Kinetics. *J. Phys. Chem. A* **2008**, *112* (50), 12868-12886.

4. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, *132* (15), 154104.

5. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32* (7), 1456-1465.

6. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H., Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements. *Theor. Chim. Acta* **1990**, 77 (2), 123-141.

7. Weigend, F.; Ahlrichs, R., Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. **2005**, 7 (18), 3297-3305.

8. Foster, J. P.; Weinhold, F., Natural Hybrid Orbitals. J. Am. Chem. Soc. **1980**, 102 (24), 7211-7218.

9. Reed, A. E.; Weinhold, F., Natural Bond Orbital Analysis of Near-Hartree–Fock Water Dimer. *J. Chem. Phys.* **1983**, *78* (6), 4066-4073.

10. Reed, A. E.; Weinhold, F., Natural Localized Molecular Orbitals. *J. Chem. Phys.* **1985**, 83 (4), 1736-1740.

11. Reed, A. E.; Weinstock, R. B.; Weinhold, F., Natural Population Analysis. *J. Chem. Phys.* **1985**, *83* (2), 735-746.

12. Carpenter, J. E.; Weinhold, F., Analysis of the Geometry of the Hydroxymethyl Radical by The "Different Hybrids for Different Spins" Natural Bond Orbital Procedure. *J. Mol. Struct. THEOCHEM* **1988**, *16*9, 41-62.

13. Reed, A. E.; Curtiss, L. A.; Weinhold, F., Intermolecular Interactions from A Natural Bond Orbital, Donor-Acceptor Viewpoint. *Chem. Rev.* **1988**, *88* (6), 899-926.

14. Lu, T.; Chen, F., Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem.

2012, 33 (5), 580-592.

15. Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P., Comparative Assessment of A New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. *J. Chem. Phys.* **2003**, *119* (23), 12129-12137.

16. Lu, T.; Chen, Q., Simple, Efficient, and Universal Energy Decomposition Analysis Method Based on Dispersion-Corrected Density Functional Theory. *J. Phys.Chem. A* **2023**, *127* (33), 7023-7035.

17. Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations using A Plane-Wave Basis Set. *Phys. Rev. B* **1996**, *54* (16), 11169-11186.

18. Kresse, G.; Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors using A Plane-Wave Basis Set. *Comput. Mater. Sci.* **1996**, *6* (1), 15-50.

19. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77 (18), 3865.

20. Blöchl, P. E., Projector Augmented-Wave Method. Physi. Rev. B 1994, 50 (24), 17953.

21. Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T., VASPKIT: A User-friendly Interface Facilitating High-throughput Computing and Analysis Using VASP Code. *Comput. Phys.* Commun. **2019**, *267*, 108033.

22. Browne, W. R.; Chen, J.; Draksharapu, A.; Gruden, M.; Stepanovic, S., A Non-Heme Iron Photocatalyst for Light-Driven Aerobic Oxidation of Methanol. *Angew. Chem. Int. Ed.* **2018**, 57 (12), 3207-3211.

23. Song, H.; Meng, X.; Wang, S.; Zhou, W.; Song, S.; Kako, T.; Ye, J., Selective Photo-oxidation of Methane to Methanol with Oxygen over Dual-Cocatalyst-Modified Titanium Dioxide. *ACS Catal.* **2020**, *10* (23), 14318-14326.

24. Zhou, W.; Qiu, X.; Jiang, Y.; Fan, Y.; Wei, S.; Han, D.; Niu, L.; Tang, Z., Highly Selective Aerobic Oxidation of Methane to Methanol over Gold Decorated Zinc Oxide via Photocatalysis. *J. Mater. Chem. A* **2020**, *8* (26), 13277-13284.

25. Jiang, Y.; Li, S.; Wang, S.; Zhang, Y.; Long, C.; Xie, J.; Fan, X.; Zhao, W.; Xu, P.; Fan, Y.; Cui, C.; Tang, Z., Enabling Specific Photocatalytic Methane Oxidation by Controlling Free Radical Type. *J. Am. Chem. Soc.* **2023**, *145* (4), 2698-2707.

26. Luo, L.; Fu, L.; Liu, H.; Xu, Y.; Xing, J.; Chang, C.-R.; Yang, D.-Y.; Tang, J., Synergy of Pd Atoms and Oxygen Vacancies on In2O3 for Methane Conversion under Visible Light. *Nat. Commun.* **2022**, *13* (1), 2930.

27. Feng, N.; Lin, H.; Song, H.; Yang, L.; Tang, D.; Deng, F.; Ye, J., Efficient and Selective Photocatalytic CH4 Conversion to CH3OH with O2 by Controlling Overoxidation on TiO2. *Nat. Commun.* **2021**, *12* (1), 4652.

28. Xie, P.; Ding, J.; Yao, Z.; Pu, T.; Zhang, P.; Huang, Z.; Wang, C.; Zhang, J.; Zecher-Freeman, N.; Zong, H.; Yuan, D.; Deng, S.; Shahbazian-Yassar, R.; Wang, C., Oxo Dicopper Anchored on Carbon Nitride for Selective Oxidation of Methane. *Nat. Commun.* **2022**, *13* (1), 1375.

29. Xiao, Z.; Wan, Z.; Zhang, J.; Jiang, J.; Li, D.; Shen, J.; Dai, W.; Li, Y.; Wang, X.; Zhang, Z., Interstitial Zinc Defects Enriched ZnO Tuning O2 Adsorption and Conversion Pathway for Superior Photocatalytic CH4 Oxygenation. *ACS Catal.* **2024**, *14* (12), 9104-9114. 30. Xu, W.; Liu, H.-X.; Hu, Y.; Wang, Z.; Huang, Z.-Q.; Huang, C.; Lin, J.; Chang, C.-R.; Wang, A.; Wang, X.; Zhang, T., Metal-Oxo Electronic Tuning via In Situ CO Decoration

for Promoting Methane Conversion to Oxygenates over Single-Atom Catalysts. *Angew. Chem. Int. Ed.* **2024,** 63 (16), e202315343.

31. Xie, J.; Jin, R.; Li, A.; Bi, Y.; Ruan, Q.; Deng, Y.; Zhang, Y.; Yao, S.; Sankar, G.; Ma, D.; Tang, J., Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. *Nat. Catal.* **2018**, *1* (11), 889-896.

32. Sun, X.; Chen, X.; Fu, C.; Yu, Q.; Zheng, X.-S.; Fang, F.; Liu, Y.; Zhu, J.; Zhang, W.; Huang, W., Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates. *Nat. Commun.* **2022**, *13* (1), 6677.