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S1. Infinite extension modeling of the S2 layer 

 

1. Rationale of Molecular Simulations 

In this study, periodic boundary conditions (PBC) were applied in LAMMPS, along 

with covalent bonds across boundaries, to simulate the swelling behavior of cell wall 

structures, specifically in the S2 layer. While the system is not truly “infinite,” it 

effectively mimics infinite extension by repeating a finite structural unit along a given 

direction. 

Physical interpretation of periodic boundary conditions 

In PBC, the simulation box represents a repeating unit of the material. This unit is 

infinitely replicated in space, but its physical properties—such as size and atomic 

positions—can change over time in response to external conditions. As the system 

swells, the finite unit within the simulation box deforms due to external factors, such 

as water absorption, generating strain even though the system is modeled as “infinitely 

long” in one direction. 

Box size as an indicator of microscopic changes  

PBC ensures structural continuity at the boundaries, but the local stress and strain are 

still observed in the deformation of individual units. Even though the “infinite length” 

is achieved through repeated finite units, changes in the size of a single simulation box 

provide insight into macroscopic structural behavior. For example, while swelling 

occurs at the microscopic level within the cell wall, this localized expansion also leads 

to the overall expansion of the simulation box, thereby generating strain. 

Localized Strain Behavior  

Although the structure is modeled as infinitely extended, strain remains a localized 

phenomenon, reflected in the size changes of the finite unit during swelling. The 

expansion of the cell wall material at the microscopic level translates into a measurable 

increase in box size, which can be used to quantify strain. 

In conclusion, Periodic boundary conditions allow for the simulation of infinite 

extension by replicating a finite unit, providing a way to study the swelling behavior of 
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the wood cell wall. Even though the system is modeled as infinitely long, localized 

swelling leads to measurable strain in the finite units, making it reasonable to calculate 

strain based on box size changes under PBC. 

 

2. Formation of Periodic Boundaries 

 
Figure S1. Schematic diagram of structural periodicity 

 

In this simulation, periodic boundary conditions (PBC) are applied in the x, y, and z 

directions (Figure S1), with hemicellulose distributed between CNFs. The CHARMM 

potential field is employed to model molecular interactions, ensuring that the c-axis of 

the CNFs remains periodic, thereby preserving covalent bonds across boundaries. The 

simulation box size is carefully controlled to prevent the overlap of CNFs along the 

axial direction while allowing bond angles to properly connect the structures. Under 

the CHARMM force field, the rotation of CNF and changes in the simulation box size 

can lead to variations in the bond lengths of the CNFs. Therefore, for each given MFA, 

the length L of a single CNF, the number of fibers N within the box, and the spacing d 

between the CNFs must all be determined. A necessary condition for this is that  

𝑑 < 𝑎/𝑁   (1) 

where a represents the length of the simulation box in the z-direction. To achieve real 

periodicity and maintain proper bonding at the boundaries, extensive parameter 

adjustments are required for each MFA, ensuring the bonds at the boundaries remain 

intact throughout the simulation between CNFs at various MFAs. Table S2 presents the 
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length (L), the number of CNFs (N), the thickness of CNFs (H), the spacing (𝑑), and 

the box sizes (a and b) at various MFAs. Figures S2-S5 illustrate the structure of each 

unit cell at different MFAs, along with the covalent bonding at the periodic boundaries 

after replication along the y and z directions. As the MFA changes, both the box size 

and the spacing between units vary accordingly. The covalent bonds at the boundaries 

are correctly connected, confirming that the periodicity of all structures is accurate and 

properly maintained. 

 

Table S1. Parameter settings of the unit cell at different MFAs 

 

θ (°) L (Å) H (Å) N d (Å) a (Å) b (Å) 
Mass ratio of CNF 

to hemicellulose 

0 155.7  36.8 2 40  75.8  156.4  4:1 

7.5 519  36.8 2 36  73.5  515.6  4:1 

15 570.9  36.8 2 37  74  551  4:1 

22.5 394.4  36.8 2 38.5  77  363.2  4:1 

30 342.5 36.8 2 42.7 85.6 296.7 4:1 

37.5 145.3 36.8 2 44.8 89.5 114.5 4:1 

45 134.9 36.8 2 47.7 95.4 95.4 4:1 

 

 

Figure S2. Schematic diagram illustrating the model’s periodic boundary 

conditions. The initial unit cell, with a microfibril angle (MFA) of 0° (left), is expanded 

threefold in both the y and z directions (right). Covalent bonds at the boundaries are 
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highlighted and magnified in the purple box. Covalent bonds within the CNFs and 

hemicellulose are marked in blue and green, respectively. 

 

Figure S3. Schematic diagram illustrating the model’s periodic boundary 

conditions. The initial unit cell, with a microfibril angle (MFA) of 7.5° (left), is 

expanded threefold in the z direction and twofold in the y direction (right). Covalent 

bonds at the boundaries are highlighted and magnified in the purple box. Covalent 

bonds within the CNFs and hemicellulose are marked in blue and green, respectively. 
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Figure S4. Schematic diagram illustrating the model’s periodic boundary 

conditions. The initial unit cells, with microfibril angle (MFA) of 22.5° (a) and 30° (b), 

are expanded threefold in the z direction and twofold in the y direction. Covalent bonds 

at the boundaries are highlighted and magnified in the purple box. Covalent bonds 

within the CNFs and hemicellulose are marked in blue and green, respectively. 
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Figure S5. Schematic diagram illustrating the model’s periodic boundary 

conditions. The initial unit cells, with microfibril angle (MFA) of 37.5° (a) and 45° (b), 

are expanded threefold in both the y and z directions. Covalent bonds at the boundaries 

are highlighted and magnified in the purple box. Covalent bonds within the CNFs and 

hemicellulose are marked in blue and green, respectively. 
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S2. Hydration-induced deformation 

 

 

Figure S6. Schematic of the model at the initial stage of infiltration. MFA = 45° is taken 

as an example. (a,b) Configurations on different planes with water molecules. (c) 

Configuration on y-z plane without water molecules. 

 

 

 

Figure S7. Schematic diagram of the three conformations of TG, GG, and GT. 

 

 

Figure S8. The number of different types of HBs per ring varies with wetting time 



9 

 

 

Figure S9. Regional density distribution of hemicellulose with water addition time. 

 

 

Figure S10. The number of different types of HBs per ring varies with moisture, Here 

MFA = 22.5° is selected as an example. 

 

 

 

Figure S11. The number of each type of HBs per ring as a function of microfibril angles 

with a moisture content of 5%. Error bars correspond to standard deviation. 
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Figure S12. The number of each type of HBs per ring as a function of microfibril angles 

with a moisture content of 25%. Error bars correspond to standard deviation. 

 

 

 

 

Figure S13. Schematic diagram of different deformation types of CNF. 
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Figure S14. Comparison of strain prediction curves between the Fratzl model and mixed 

rule analysis.  

 

 

 

 

 

 

Table S2. Experimental Data on Hygromechanical Deformation in Wood Cell Walls 

Regulated by Microfibril Angle 

 

Reference Wood Type 
Microfibril Angle 

(MFA) 

Observed 

Deformation 

Behavior 

Eur. J. Wood 

Prod (2010) 1 
 

 36-year-old Sitka 

spruce 
 

20° ± 5° 
Maximum 

deformation range 

Nature (2023)2 
14-20-year-old 

white oak 
23° ± 7° 

Maximum 

deformation range 

Nature (1997)3 Pine cones 16° ± 5° 
Capable of 

elongation 

Nature (1997)3 Pine cones 60° ± 2° Resist elongation 
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S3. Mixture rule analysis 

 

 

 

Figure S15. Two-Phase Structural Model and Coordinate System Diagram 

 

The constitutive of fiber in x and y directions can be expressed as: 

{
𝜎𝐹𝑥 = 𝐸𝐹ɛ𝐹𝑥

𝜎𝐹𝑦 = 𝐸𝐹ɛ𝐹𝑦
 (1) 

 

Assume the swelling strain of matrix along x and y directions is η, we get the 

constitutive of the matrix: 

{
𝜎𝑀x =

𝐸𝑀

1−𝜈2
(ɛ𝑀x − 𝜂) +

𝜈𝐸𝑀

1−𝜈2 (ɛ𝑀y − 𝜂)

𝜎𝑀y =
𝜈𝐸𝑀

1−𝜈2
(ɛ𝑀x − 𝜂) +

𝐸𝑀

1−𝜈2 (ɛ𝑀y − 𝜂)
  (2) 

The stress and strain relationship between matrix and fibers can be expressed as: 

{
𝜎y = 𝑐𝑚𝜎𝑀y + (1 − 𝑐𝑚)𝜎𝐹y, 𝜎x = 𝜎𝐹x = 𝜎𝑀x

ɛx = 𝑐𝑚ɛ𝑀y + (1 − 𝑐𝑚)ɛ𝐹y, ɛy = ɛ𝐹x = ɛ𝑀x
  (3) 

 

Combining Eqs. (1), (2) and (3), we can solve the swelling stress of Two-Phase structure: 

{

𝜎x =
𝐸𝐹(𝑐𝑚(−𝜂(𝜈+1)+𝜈ɛy)+ɛx)

(1−𝜈2)𝜑𝑐𝑚+(1−𝑐𝑚)

𝜎y =
𝐸𝑀[(𝑐𝑚

2(𝜑(𝜈+1)−1)((𝜈−1)ɛy𝜑+ɛy−𝜂))+𝑐𝑚(𝜈ɛx𝜑+ɛy((𝜑−1)2−𝜈2𝜑2))−𝜂]

(1−𝜈2)𝜑𝑐𝑚+(1−𝑐𝑚)

  (4) 

 

Where φ = EF/EM is the modulus ratio of fibers and matrix. 

Then the stress and strain in global coordinates can be expressed as the rotation of 

stress and strain in the material coordinates: 

𝝈𝒈 = 𝑹𝝈𝑚 (5) 

Where 

𝝈𝒈 = [

𝜎1

𝜎2

𝜏12

] (6) 
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𝝈𝒎 = [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] (7) 

 

R represents the coordinate transformation matrix, its expanded forms are as follows: 

𝑅 = (
𝑐𝑜𝑠2𝜃             𝑠𝑖𝑛2𝜃           2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

   𝑠𝑖𝑛2𝜃             𝑐𝑜𝑠2𝜃        − 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃
−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃     𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃       𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃

)  (8) 

 

When no external stress is applied, the Two-Phase structure will be relaxed to a stress-

free configuration. To solve the swelling strain of stress-free configuration, we set the 

stresses of configuration equal zero and finally we get:  

{
𝜎1 = 0
𝜎2 = 0

 (9) 

Then the swelling strain ɛ1 can be solved: 

ɛ1 =
𝐿1

𝐿2
 (10) 

Where 

𝐿1 = 𝜂𝑐𝑚{4𝑐𝑚
2𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝜃(𝜈𝜑 + 𝜑 − 1)2

− 𝑐𝑚(𝜈𝜑 + 𝜑 − 1)[2𝑐𝑜𝑠2𝜃(𝜈𝜑 + 𝜑 − 2) + 𝑐𝑜𝑠4𝜃(𝜈𝜑 + 𝜑 − 1)

+ 𝜈𝜑 + 𝜑 + 1]  − 2(𝑐𝑜𝑠2𝜃(𝜈𝜑 + 𝜑 − 1) + 𝜈𝜑 + 𝜑 + 1)} 

 

𝐿2 = −𝑐𝑚[𝑐𝑜𝑠4𝜃(𝜈𝜑 + 𝜑 − 1)2 + (−𝜈2 + 2𝜈 + 3)𝜑2 + 2(𝜈 − 3)𝜑 + 3]

+ 𝑐𝑚
2(𝜈𝜑 + 𝜑 − 1)[𝑐𝑜𝑠4𝜃(𝜈𝜑 + 𝜑 − 1) − (𝜈 − 3)𝜑 − 3] − 4𝜑 

 

A more detailed derivation process can be found in our forthcoming publication (Li et 

al. Biomimetic Turing Machine: A Multiscale Theoretical Framework for Inverse 

Design of Target Space Curves[J]. Available at SSRN 4936519).4 

   

Here ν represents the Poisson coefficient of the hemicellulose matrix, φ represents the 

elastic modulus ratio of CNF and hemicellulose, cm represents the volume fraction of 

hemicellulose, θ represents microfibril angle, η represents the isotropic volume strain 

due to swelling of the matrix, ɛ1 represents swelling strain in the 1-axis direction.   
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