Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Electronic Supporting Information

Significant Suppression of Exothermic Heat Flow in Silicon Anodes via In-Situ Polymerization of Phosphonium Ionic Liquids

Won-Jang Cho^a, Seunghyeon Lee^b, Uddhav Kulkarni^c, Jaeyoung Jeon^d, TaeYeong Im^e, You Kyeong Jeong^e, Dong Soo Hwang^b, Jong-Seong Bae^f, Kyungho Ahn^{*e}, Jongsup Hong^{*d}, Gi-Ra Yi^{*a}

^aDepartment of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea. E-mail: yigira@postech.ac.kr

^bDivision of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.

^cSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.

^dSchool of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea. E-mail: jongsup.hong@yonsei.ac.kr

^eLG Energy Solution, Ltd., R&D Campus, 188 Monji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea. E-mail: akhinha@lgensol.com

^fKorea Basic Science Institute (KBSI), Busan, 46742, Republic of Korea.

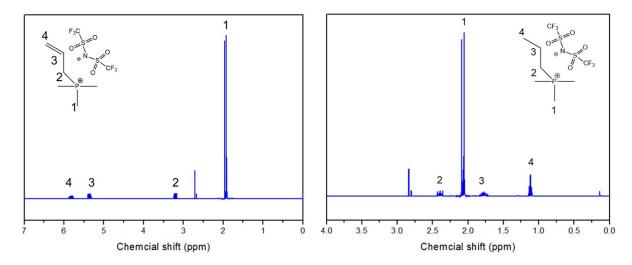

*Corresponding author: akhinha@lgensol.com, jongsup.hong@yonsei.ac.kr, yigira@postech.ac.kr.

Table S1. The corresponding R_s , R_{SEI} , and R_{ct} values (ohm) were extracted from the equivalent circuit in the EIS data in Si||Li half-cell configuration.

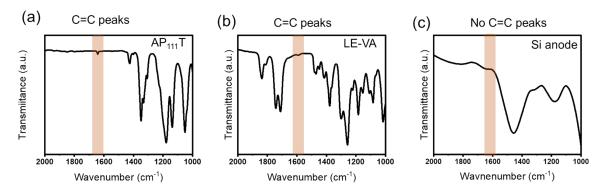
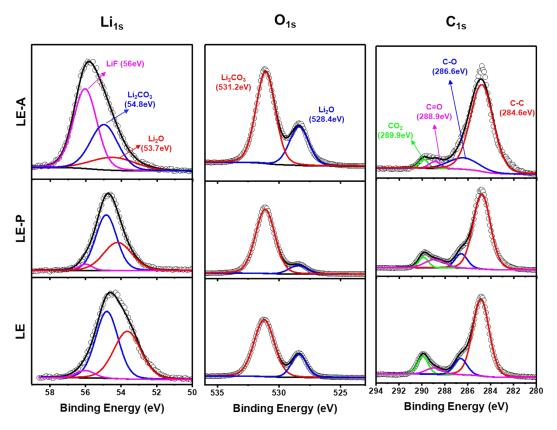
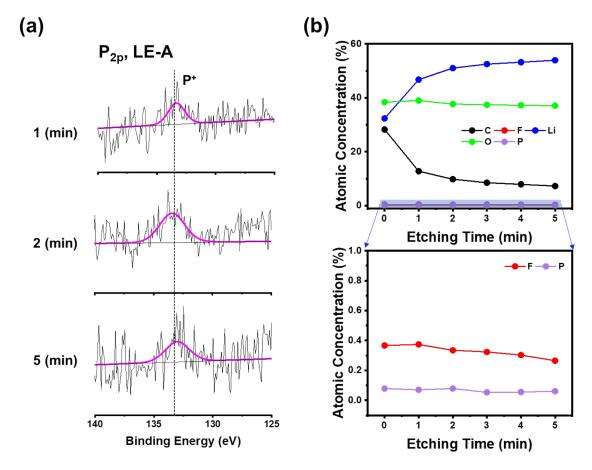
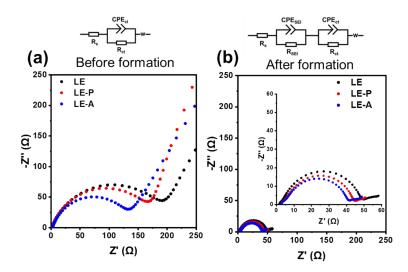
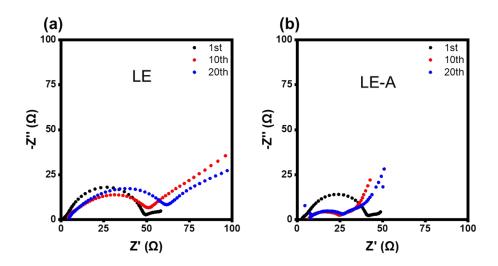

Cell state	LE			LE-A			LE-P		
	R _s	R _{SEI}	R _{ct}	R _s	R _{SEI}	R _{ct}	R _s	R _{SEI}	R _{ct}
Before formation	2.547	-	223.6	2.582	-	150.9	2.588	-	204.9
After Formation	1.289	8.197	37.97	1.625	5.161	34.14	1.698	6.138	36.4

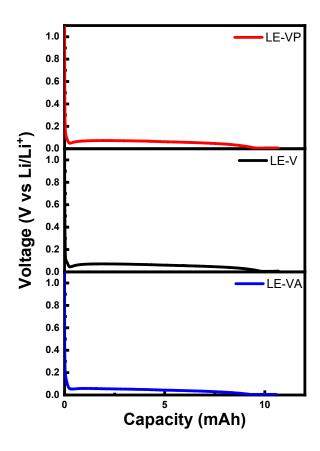
Table S2. DSC measurement results with different electrolytes. All the electrolytes are mixed with a fully lithiated Si anode.

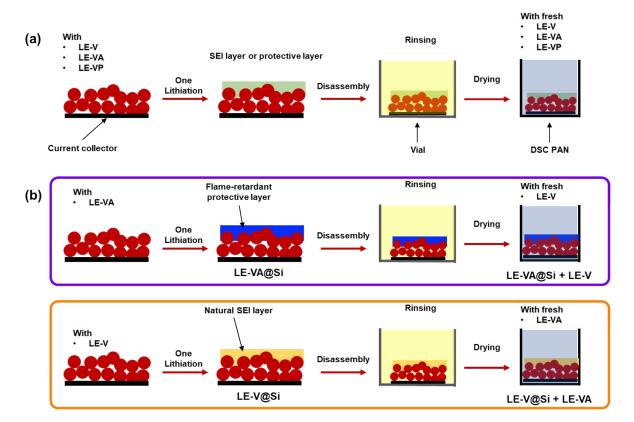

Electrolyte	Specific Heat Flow [W/g]	Exothermic Temperature [°C]		
LE-VA	3.82	302		
LE-V	48.95	335.6	With VC	
LE-VP	51.7	299		
LE-A	9.56	251.1	Without	
LE	37.34	282.3		
LE-P	40.04	252.7		
LE-VA@Si + LE-V	3.28	291	With	
LE-V@Si + LE-VA	38.79	283	VC	

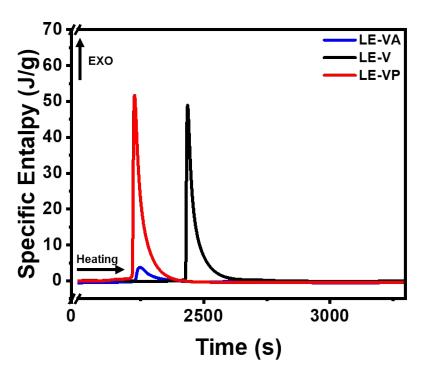

Figure S1. 1 H NMR data of AP $_{111}$ T and PP $_{111}$ T monomer.

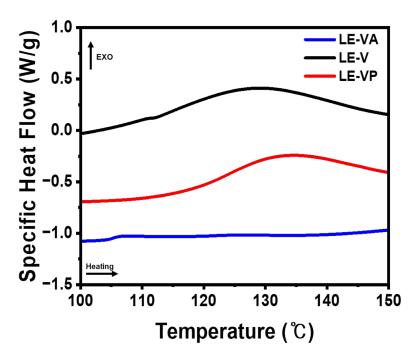

Figure S2. FT-IR spectra of (a) $AP_{111}T$, (b) LE-VA, and (c) the silicon anode surface after cycling in LE-VA. The absence of the C=C peak on the silicon anode surface indicates successful polymerization of the 5 wt.% $AP_{111}T$ monomer.

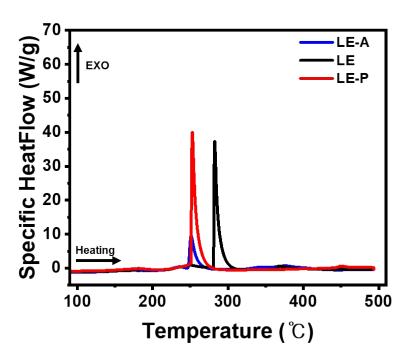

Figure S3. XPS spectra for one lithiated Si anode with different electrolytes. In the Li_{1s} the LiF (56 eV), Li_2CO_3 (54.8 eV), Li_2O (53.7 eV) peaks were observed.

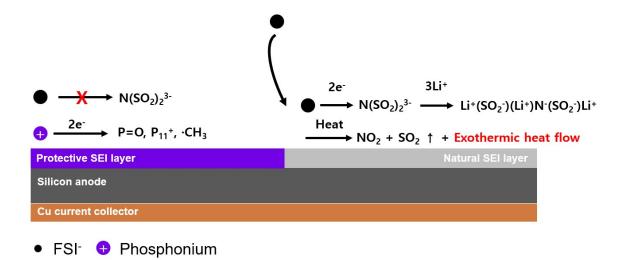

Figure S4. Depth profile along the Ar etching time. All the elements represented lithiated LE-A Si anode. (a) P_{2p} spectra and (b) atomic ratio in the SEI layer.

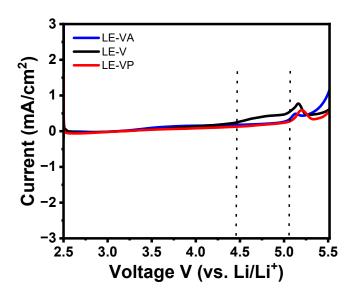

Figure S5. Electrochemical impedance spectroscopy (EIS) data and their equivalent circuits for Si half-cells were shown for (a) before and (b) after formation with different electrolytes. The inset profile in the (b) was presented in an enlarged view.

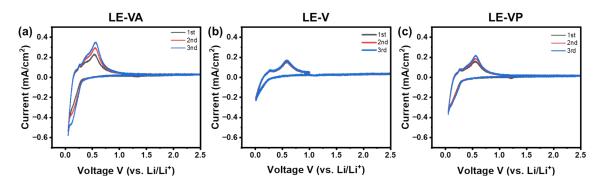

Figure S6. Electrochemical impedance spectroscopy (EIS) data for Si half-cells after the 1^{st} , 10^{th} , and 20^{th} cycles are shown for (a) the LE and (b) the LE-A.

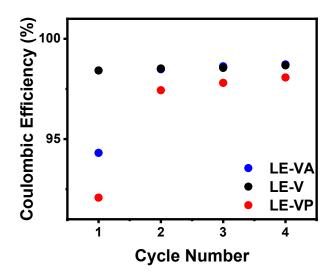

Figure S7. Discharge profiles for first lithiation of Silicon anode in this study with different electrolytes.


Figure S8. Preparation process for DSC sampling. (a) same electrolyte used for lithiation and DSC sampling. (b) Different electrolyte used for lithiation and DSC sampling.


Figure S9. Specific enthalpy as a function of temperature for lithiated Si anodes in the presence of LE-V series electrolyte.


Figure S10. Specific heat flow in the low-temperature range (100-150 °C) for lithiated Si anodes in the presence of LE-V with or without additives.


Figure S11. Specific heat flow for lithiated Si anodes with LE series. Which didn't include VC additive.


Figure S12. Possible mechanism for radical scavenging of $AP_{111}T$ -derived protective layer.

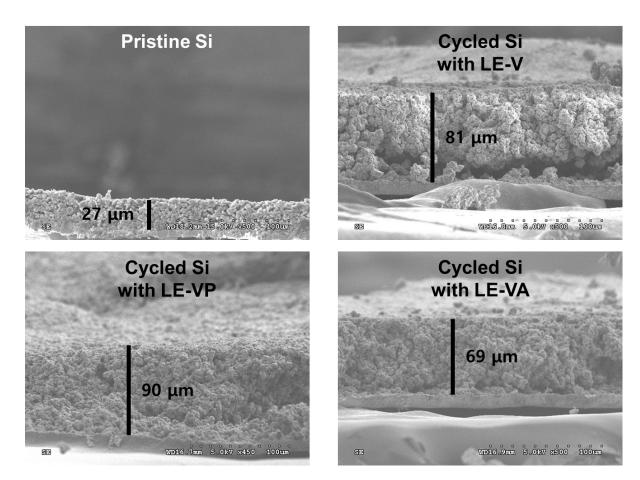

Figure S13. Linear sweep voltammogram (LSV) curves of Li||Pt cells with three different electrolytes as a scan rate of 0.1 mV/s.

Figure S14. Cyclic voltammogram (CV) of different electrolytes for (a) LE-VA, (b) LE-V and (c) LE-VP.

Figure S15. Initial coulombic efficiency of long-term cycling measurements.

Figure S16. Cross-sectional SEM images of pristine state Si anode and cycled Si electrode with different electrolytes.