Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Anchoring intermediate phases via few-layer MoSSe nanosheets in flexible porous carbon fiber for stable lithium ion storage

Mengluan Gao^a, Zhe Cui^b, Jinqi Zhu^a, Rujia Zou^{*a}, Wenqing Wang^a, Ye Chen^{*a} and Huifang Chen^{*a}

a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

b Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao 999078, China

*Corresponding authors.

E-mail addresses: <u>rjzou@dhu.edu.cn</u> (R. Zou), <u>chenye@dhu.edu.cn</u> (Y. Chen), <u>hfchen@dhu.edu.cn</u> (H. Chen).

Figure S1. Optical photographs of MoSSe/CNFs film.

Figure S2. EDS mapping of MoSSe/CNFs.

Figure S4. a) SEM image, b) HRTEM image and c) EDS mapping of MoSe2/CNFs.

Figure S6. N2 adsorption – desorption isotherm of MoSSe/CNFs, MoS₂/CNFs and MoSe₂/CNFs.

Figure S7. CV curves at 0.1 mV s⁻¹ the initial cycle of MoSSe/CNFs, MoS₂/CNFs and MoSe₂/CNFs.

Figure S8. a) CV curves at 0.1 mV s⁻¹ the second cycle of MoSSe/CNFs, $MoS_2/CNFs$ and $MoSe_2/CNFs$. b) Comparison graph of peak currents for MoSSe/CNFs, $MoS_2/CNFs$ and $MoSe_2/CNFs$.

Figure S9. a) CV curves of $MoS_2/CNFs$ at 0.1 mV s⁻¹ scan rate. b) CV curves of $MoSe_2/CNFs$ at 0.1 mV s⁻¹ scan rate.

Figure S10. a) CV curves of MoSSe/CNFs at 0.2 mV s⁻¹ scan rate after 200 cycles at 5 A g⁻¹. b) CV curves of MoS₂/CNFs at 0.2 mV s⁻¹ scan rate after 200 cycles at 5 A g⁻¹.

Figure S11. a) Elemental compositions of MoSSe/CNFs at fully delithiated to 3 V versus Li⁺/Li by EDS analysis. b) XRD patterns of MoSSe/CNFs electrode after cycling.

Figure S12. a-c) TEM images of MoSSe/CNFs during in situ lithiation/delithiation processes in TEM. d) Selected area electron diffraction (SAED) patterns for after first cycle.

Figure S13. a) SEM, b) TEM images of MoSSe/CNFs electrode after cycling.

Figure S14. a) CV curves of MoS₂/CNFs at scan rates from 0.2 to 1.0 mV s⁻¹. b) Corresponding liner relationship between log (i) and log (v) of different peaks.

Figure S15. a) CV curves of MoSe₂/CNFs at scan rates from 0.2 to 1.0 mV s⁻¹. b) Corresponding liner relationship between log (i) and log (v) of different peaks.

Figure S16. Contribution ratio of the capacitive process at different scan rates for a) MoS_2 , and b) $MoSe_2$.

Figure S17. CV curves of the capacitive contribution at 1.0 mV s⁻¹.

Figure S18. EIS spectra of MoS₂/CNFs electrodes with different cycles.

Figure S19. EIS spectra of MoSe₂/CNFs electrodes with different cycles.

Figure S20. SEM images and optical photographs of MoSSe/CNFs after cycling.

Figure S21. SEM images and optical photographs of MoS₂/CNFs after cycling.

Figure S22. SEM images and optical photographs of MoSe₂/CNFs after cycling.

Figure S23. UV-Vis spectra of polysulfide solution upon adsorption by different sorbents.

Table S1. Raman spectra parameters of as-prepare products.						
Products	D1 band	D3 band	D4 band	G band	I_{D1}/I_G	
MoSSe/CNFs	1356	1532	1201	1601	1.42	
MoSe ₂ /CNFs	1321	1435		1593	1.25	
MoS ₂ /CNFs	1359	1515		1599	1.31	

Table S2. The comparison of molybdenum- or selenide-based or sulfide-based anode

materials recently.					
Materials	Rate performance	Cyclic performance	Reference		
	945.5 mAh g ⁻¹ at 0.1 A g ⁻¹	460 at 5 A g ⁻¹ for 2000	[1]		
	484.9 mAh g ⁻¹ at 0.1 A g ⁻¹	cycles	[⊥]		
Cos @NC 400	1024.6 mAh g ⁻¹ at 0.2 A g ⁻¹	767.6 at 0.5 A g ⁻¹ for			
C032@INC-400	463.3 mAh g ⁻¹ at 2 A g ⁻¹ 500 cycles		[2]		
	932 mAh g ⁻¹ at 0.05 A g ⁻¹	430 at 2 A g ⁻¹ for 1000	[3]		
NI3/31102/1010F	400 mAh g ⁻¹ at 2 A g ⁻¹	cycles			
MVana@Mas	817 mAh g ⁻¹ at 0.2 A g ⁻¹	877 at 1 A g ⁻¹ for 70	[4]		
WIXEIIe@W032	717 mAh g ⁻¹ at 10 A g ⁻¹	cycles	[4]		
	1060 mAh g ⁻¹ at 0.05 A g ⁻¹	559.74 at 1 A g ⁻¹ for	[5]		
10032/12203 @CINF-3	443 mAh g ⁻¹ at 5 A g ⁻¹	500 cycles	[5]		
CH SONSC	610.4 mAh g ⁻¹ at 0.1 A g ⁻¹	512.7 at 1 A g ⁻¹ for	[6]		
Cu ₂ s@NSC	387.6 mAh g ⁻¹ at 5 A g ⁻¹	1000 cycles	[0]		

	616.8 mAh g ⁻¹ at 10 A g ⁻¹	cycles	
Mosse/CNFs	996.9 mAh g ⁻¹ at 0.2 A g ⁻¹	750 at 5 A g-1 for 950	This work
	523.7 mAh g ⁻¹ at 3 A g ⁻¹	500 cycles	[10]
	833.4 mAh g ⁻¹ at 0.5 A g ⁻¹	507.8 at 1 A g ⁻¹ for	[10]
100502/100	560 mAh g ⁻¹ at 2 A g ⁻¹	300 cycles	[9]
Masa /rco	770 mAh g ⁻¹ at 0.1 A g ⁻¹	732.9 at 1 A g ⁻¹ for	[0]
1002/Cu2-x3e@C	285.2 mAh g ⁻¹ at 5 A g ⁻¹	500 cycles	႞၀]
MoO-/Cu- Sa@C	667.5 mAh g ⁻¹ at 0.1 A g ⁻¹	480.9 at 2 A g ⁻¹ for	[8]
NDSe2@PPy-2	361 mAh g ⁻¹ at 4 A g ⁻¹	210 cycles	[7]
	819 mAh g ⁻¹ at 0.1 A g ⁻¹	670 at 0.5 A g ⁻¹ for	[7]

Table S3. Values of Rs, Rf and Rct obtained from the fitting date.

Electrodes	$\mathrm{R_{s}}\left(\Omega ight)$	$\mathrm{R_{f}}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$
MoSSe/CNFs	4.546	36.24	102.4
MoSe ₂ /CNFs	2.252	48.64	237.4
MoS ₂ /CNFs	10.65	32.08	418.1

References:

[1] Y. Xia, T. Yang, Z. Wang, T. Mao, Z. Hong, J. Han, D.L. Peng, G. Yue, Van der Waals forces between S and P ions at the CoP-C@MoS₂/C heterointerface with enhanced lithium/sodium storage, Adv. Funct. Mater. 33 (2023) 2302830. https://doi.org/10.1002/adfm.202302830.

[2] J. Xu, P. Ye, Y. Cheng, L. Ji, Y. Wei, Y. Chen, Meta-organic framework-based CoS_2 nitroge-doped carbon for high-performance lithium storage, Energy Technol-Ger 11 (2023) 2201452. https://doi.org/10.1002/ente.202201452.

[3] N. Zhang, Q. Meng, H. Wu, X. Hu, M. Zhang, A. Zhou, Y. Li, Y. Huang, L. Li, F. Wu, R. Chen, Co-MOF as stress-buffered architecture: an engineering for improving the performance of NiS/SnO₂ heterojunction in lithium storage, Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202300413.

[4] H. Tan, L. Zhang, K. Gao, L. Sun, Y. Zhang, F. Xie, Few-layer MoS_2 nanosheets vertically supported on Ti_3C_2 -MXene sheets promoting lithium storage performance, Dalton T. 52 (2023) 16413-16420. https://doi.org/10.1039/d3dt01963b.

[5] X. Chen, Q. Zhang, H. Wang, L. Wang, H. Wang, Y. Zeng, MoS_2 nanoflowers implanted in nitrogendoped carbon fibers with Fe_2O_3 nanoparticles decorated for enhanced lithium storage performance, J. Alloys Compd. 963 (2023). https://doi.org/10.1016/j.jallcom.2023.171195.

[6] T. Li, D. Zhao, M. Shi, T. Wang, Q. Yin, Y. Li, J. Qi, F. Wei, Y. Sui, MOF-derived N,S Co-doped carbon matrix-encapsulated Cu_2S nanoparticles as high-performance lithium-ion battery anodes: a joint theoretical and experimental study, J. Mater. Chem. A 11 (2023) 1461-1472. https://doi.org/10.1039/d2ta08539a.

[7] B.-H. Kang, S. Shin, K. Nam, J. Bae, J.-M. Oh, S.-M. Koo, H. Sohn, S.-H. Park, W.H. Shin, Exfoliated NbSe₂ nanosheet@polypyrrole hybrid nanocomposites as a high performance anode of lithium-ion batteries, J. Mater. Chem. A 11 (2023) 19083-19090. https://doi.org/10.1039/d3ta01335a.

[8] M. Zhong, X. Guo, L. Li, Y.-W. Li, K. Zhao, H. Peng, X. Zhang, Hetero-phase $MoO_2/Cu_{2-x}Se$ nanocomposites distributed in porous octahedral carbon networks for high-performance lithium

storage, ACS Appl. Nano Mater. 6 (2023) 20018-20027. https://doi.org/10.1021/acsanm.3c03824.

[9] W. Wang, J.-Y. Chen, J. Ouyang, H. Yin, A.-J. Li, L. Chen, J.-L. Huang, Y.-C. Zhu, G.-Y. Li, Z.-H. Hou, Spray pyrolysis-derived W-doped MoSe₂/rGO paper-like microspheres: optimization of microstructure and mesostructure for enhanced lithium storage, Rare Met. 43 (2024) 3019-3031. https://doi.org/10.1007/s12598-024-02662-4.

[10] Z. Wang, X. Chen, D. Wu, T. Zhang, G. Zhang, S. Chu, B. Qian, S. Tao, Strong metal oxide-support interaction in MoO₂/N-doped MCNTs heterostructure for boosting lithium storage performance, J. Colloid Interface Sci. 650 (2023) 247-256. https://doi.org/10.1016/j.jcis.2023.06.192.