Supporting Information

High-throughput Screening of Stable Ag-Pd-F Catalysts for Formate Oxidation Reaction Using Machine Learning

Fanzhe Ma, ^{a, b} Fuyi Chen,^{* a, b} Peng Xu, ^{a, b} Xiaoqing Liu, ^{a, b} and Wanxuan Zhang, ^{a, b}

^a State Key Laboratory of Solidification Processing, Northwestern Polytechnical

University, Xi'an 710072, China

^b School of Materials Science and Engineering, Northwestern Polytechnical University,

Xi'an, 710072, China

* Corresponding author: E-mail: fuyichen@nwpu.edu.cn

SUPPLEMENTARY METHODS

The crystal graph convolutional neural network (CGCNN) used in this study falls under the category of neural network algorithms. The core idea of CGCNN is to represent the crystal structure as a crystal graph, which encodes atomic information and interatomic bonding interactions, and then build a convolutional neural network on this graph. The model is trained using data from density functional theory (DFT) calculations to automatically extract representations that are most suitable for predicting the target properties.¹

The crystal graph G is an undirected multigraph, where nodes represent atoms and edges represent the connections between atoms in the crystal. Unlike conventional graphs, the crystal graph allows multiple edges between the same pair of nodes, a feature that arises from the periodicity of crystals, thus distinguishing it from molecular graphs. Each node i is represented by a feature vector v_i , which encodes the properties of the atom corresponding to node i. The edge $(i, j)_k$ is represented by the feature vector $u_{(i, j)k}$, which corresponds to the k-th bond connecting atom i and atom j.¹

Atomic and bond properties are encoded using one-hot encoding in the node feature vector v_i and the edge feature vector $u_{(i, j)k}$. For discrete values, the vector is encoded according to the category to which the value belongs; for continuous values, the range of attribute values is divided into 10 categories, and the vector is encoded accordingly. The atomic feature vector v_i includes 9 attributes: period, group, electronegativity, covalent radius, valence electrons, first ionization energy, electron affinity, block, and atomic volume. For example, if the atomic features are the group number and period number, the atomic feature vector for H will be a 27-dimensional vector, where the 1st and 19th elements are 1, and all other elements are 0. If the interatomic distance is 0.7, the bond feature vector will be a 10-dimensional vector, where the first element is 1, and all other elements are 0.¹

Table S1 The different hyperparameter settings and performance of the CGCNN model. The partition ratio is a partition

Compositio	n Symmetry	E_d (meV/atom)	Lattice parameters
ratio of the train	ing set, the validation set and t	he test set in the data set. The e	epoch is 100.
Tł	ne amount of training data	Partition ratio (%)	MAE (eV/atom)
	42795	80: 10: 10	0.083
	42975	60: 20: 20	0.088
	65520	80: 10: 10	0.074
	65520	60: 20: 20	0.079

Ag	P6 ₃ /mmc	0	a = 2.91 b = 2.91 c = 9.46	$\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$
Pd	Fm ³ m	0	a = 3.92 b = 3.92 c = 3.92	$\alpha = \beta = \gamma = 90^{\circ}$
F	C2/c	0	a = 5.11 b = 3.17 c = 6.62	$\begin{array}{l} \alpha=\gamma=90^{\circ}\\ \beta=94.87^{\circ} \end{array}$
AgF	$Fm^{3}m$	0	a = 4.92 b = 4.92 c = 4.92	$\alpha = \beta = \gamma = 90^{\circ}$
AgF ₂	Pbca	0	a = 5.15 b = 5.67 c = 5.74	$\alpha = \beta = \gamma = 90^{\circ}$
AgF ₃	P6 ₁ 22	0	a = 5.03 b = 5.03 c = 15.28	$\begin{array}{l} \alpha=\beta=90^{\circ}\\ \gamma=120^{\circ} \end{array}$
Ag ₂ F	$P^{\overline{3}}ml$	0	a = 3.00 b = 3.00 c = 5.73	$\begin{array}{l} \alpha=\beta=90^{\circ}\\ \gamma=120^{\circ} \end{array}$
Ag_2F_5	pl	0	a = 4.88 b = 7.36 c = 11.13	$\alpha = 88.62^{\circ}$ $\beta = 89.18^{\circ}$ $\gamma = 74.54^{\circ}$
AgPd	R ³ m	0	a = 2.82 b = 2.82 c = 13.90	$\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$
Ag ₃ Pd	I4/mmm	0	a = 4.07 b = 4.07 c = 8.04	$\alpha=\beta=\gamma=90^\circ$
PdF ₃	$R^{\overline{3}}c$	0	a = 5.01 b = 5.01 c = 14.12	$\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$
PdF ₄	Fdd2	0	a = 5.72 b = 9.19 c = 9.42	$\alpha=\beta=\gamma=90^\circ$
AgPdF ₆	pĪ	0	a = 4.95 b = 5.00 c = 10.04	$\alpha = 76.94^{\circ}$ $\beta = 77.44^{\circ}$ $\gamma = 61.01^{\circ}$

 $c = 10.04 \qquad \gamma = 61.01^{\circ}$ **Table S2** The known Ag-Pd-F phases in the MP database, along with their space group symmetries, E_d values and lattice parameters.

Composition	DFT- ^E d (meV/atom)	CGCNN- ^E d (meV/atom)	Composition	DFT- ^E d (meV/atom)	CGCNN- ^{<i>E</i>} _{<i>d</i>} (meV/atom)
$Ag_2PdF_6_La_2WO_6_2$	-20.42	-43.855	AgPd ₉ F ₂₇ Na(WO ₃) ₉ 5	48.46	-225.188
$Ag_2PdF_6_Na_2PdF_6_3$	-19.78	-48.3778	AgPd ₃ F ₈ NaSb ₃ O ₈ 3	48.83	-55.2145
$AgPd_2F_{12}CaCr_2F_{12}_2$	-8.53	-156.148	$Ag_3Pd_2F_{12}Y_2Cr_3O_{12}_6$	51.42	-23.5639
$Ag_2PdF_6_Sm_2WO_6_2$	-4.87	-10.6794	$Ag_2Pd_4F_{13}Na_2W_4O_{13}5$	51.75	-47.1596
AgPd ₂ F ₆ Ca ₂ H ₆ Os_1	-4.66	-27.201	$Ag_2Pd_5F_{12}Lu_5(ReO_6)_2_3$	52.14	-9.49922
$AgPd_4F_{10}_ZrU_4O_{10}_4$	10.73	-67.3089	Ag ₃ Pd ₂ F ₉ Pr ₃ Re ₂ O ₉ 3	52.16	-28.6505
AgPdF ₅ _CaCuF ₅ _3	20.11	-65.779	AgPdF ₅ _MgCuF ₅ _3	52.67	-70.013
Ag ₃ PdF ₇ _Er ₃ TaO ₇ _3	27.43	-8.63915	Ag ₃ PdF ₈ _Ho ₃ ReO ₈ _3	53.15	-28.7498
AgPdF ₄ _TbSbO ₄ _6	28.33	-43.2003	Ag ₃ Pd ₁₇ F ₄₇ _Sm ₃ Ta ₁₇ O ₄₇ _2	54.50	-139.246
$Ag_4Pd_3F_{12}_Lu_4Hf_3O_{12}_3$	28.75	-6.26736	$Ag_2Pd_2F_7_Ta_2Pb_2O_7_1$	55.49	-40.4317
$Ag_6PdF_{12}La_6WO_{12}2$	29.27	-27.1889	Ag ₃ Pd ₄ F ₁₃ Nb ₄ Pb ₃ O ₁₃ 1	55.70	-83.82
AgPd ₃ F ₇ _Er ₃ TaO ₇ _1	29.66	-21.8592	AgPd ₂ F ₆ Tm ₂ TeO ₆ 1	56.29	-5.75549
Ag ₃ PdF ₇ _Sm ₃ MoO ₇ _1	29.86	-19.9782	$Ag_4Pd_2F_{15}Dy_2Mo_4O_{15}3$	57.85	-22.335
Ag ₃ PdF ₁₅ CaAs ₃ F ₁₅ 4	33.99	-178.042	$Ag_6Pd_8F_{25}Ta_8Pb_6O_{25}1$	58.84	-84.8786
$Ag_3Pd_2F_{12}Dy_2(SeO_4)_3_3$	34.36	-129.903	AgPdF ₄ _EuSeO ₄ _3	58.84	-9.45499
$Ag_3PdF_7_Er_3SbO_7_3$	36.22	-46.3002	$Ag_4Pd_6F_{19}Ta_6Pb_4O_{19}1$	59.61	-74.4805
Ag ₂ PdF ₅ Na ₂ VF ₅ 3	36.97	-14.1475	AgPdF5_NbVO5_3	60.46	-106.071
$AgPd_4F_{12}K(WO_3)_4_2$	37.02	-71.6163	Ag ₃ Pd ₁₄ F ₂₈ Ba ₃ (RhO ₂) ₁₄ 2	61.22	-16.8455
$Ag_2Pd_2F_7_Sm_2Mn_2O_7_2$	38.04	-184.797	AgPd ₆ F ₁₈ _Rb(WO ₃) ₆ _5	61.46	-50.4212
$Ag_3Pd_2F_{12}_Ga_2(MoO_4)_3_5$	38.33	-46.3136	Ag ₂ PdF ₇ Sr ₂ AlH ₇ 4	63.40	-65.1998
Ag ₃ Pd ₁₀ F ₃₀ Na ₃ (WO ₃) ₁₀ 5	42.72	-144.074	$Ag_5Pd_4F_{15}_Sr_5Ta_4O_{15}_3$	63.94	-57.2838
AgPd ₅ F ₁₃ NaSb ₅ O ₁₃ 3	42.92	-86.2316	AgPd ₆ F ₁₆ BaTa ₆ O ₁₆ 2	64.62	-108.172
AgPd ₁₁ F ₃₃ _La(WO ₃) ₁₁ _2	43.08	-220.008	$Ag_3Pd_4F_{12}Lu_4Hf_3O_{12}1$	65.56	-11.5621
$Ag_3Pd_2F_{12}Ho_2(SeO_4)_3_3$	43.53	-97.4793	Ag ₄ Pd ₃ F_Ti ₄ CN ₃ _4	66.43	-313.083
AgPd ₃ F ₉ _Tl(WO ₃) ₃ _5	44.90	-79.1895	$AgPd_6F_{18}_Tl(WO_3)_6_5$	67.74	-100.531
AgPd ₂ F ₆ Ta ₂ PbO ₆ 1	45.49	-101.813	AgPdF ₆ _ZnFeF ₆ _2	68.01	-151.424
$AgPd_2F_6_Ga(SiNi_3)_2_4$	46.16	-14.6001	$Ag_2Pd_2F_7_Tb_2Ti_2O_7_4$	68.03	-51.5722
AgPd ₇ F ₁₉ _PrTa ₇ O ₁₉ _3	46.29	-130.974	AgPd ₂ F ₁₂ CaAs ₂ F ₁₂ 2	68.46	-256.909
AgPd ₃ F ₉ _GdTa ₃ O ₉ _3	46.74	-140.093	AgPd ₆ F ₁₂ _Lu ₆ TeO ₁₂ _3	69.19	-24.0946

Table S3 The CGCNN-1 model predicted 728 potentially stable Ag-Pd-F structures with 373 distinct Ag-Pd-F compositions, including potential stable structures, E_d values converted by E_f from CGCNN-1 model and E_d by DFT.

The final number (i.e., $_2$) represent different atomic arrangement of the same substitution template (i.e., La_2WO_6) after substituting Ag, Pd, and F atoms.

AgPd ₃ F ₈ _Ho ₃ ReO ₈ _1	69.53	-48.5777	$Ag_3Pd_9F_{20}_Mg_3Ti_9O_{20}_5$	97.36	-63.7791
$Ag_5Pd_5F_{16}_La_5Mn_5O_{16}_2$	69.73	-74.8802	$Ag_2Pd_8F_{19}U_8Bi_2O_{19}3$	98.37	-8.61564
$Ag_7Pd_9F_{27}Na_7(WO_3)_9_5$	69.88	-8.12305	AgPdF ₄ _EuSeO ₄ _1	99.37	-12.0826
AgPdF ₆ _LiFeF ₆ _6	71.39	-14.9831	$Ag_{12}Pd_8F_{27}Sr_{12}Fe_8O_{27}3$	99.45	-83.1198
$Ag_5Pd_2F_{12}_Tb_5(RuO_6)_2_6$	72.44	-12.0826	AgPdF ₅ _ZnCuF ₅ _3	99.55	-50.9413
$Ag_4Pd_3F_{12}Mn_{12}Ge_4N_3_3$	74.88	-83.1198	$Ag_4Pd_4F_{13}Ru_4Pb_4O_{13}1$	100.99	-7.68368
AgPd ₁₂ F ₃₃ _Ta ₁₂ MoO ₃₃ _3	76.42	-162.607	$Ag_3Pd_3F_{11}La_3Pt_3O_{11}1$	102.06	-170.824
AgPd ₄ F ₈ NaTa ₄ O ₈ 3	76.50	-9.21292	Ag ₁₆ Pd ₈ F ₂₉ _Sr ₁₆ Mn ₈ O ₂₉ _5	102.24	-44.5738
$Ag_4Pd_2F_9_Sr_4Ru_2O_9_3$	77.44	-90.9198	Ag ₃ Pd ₁₆ F ₃₂ Sr ₃ (RhO ₂) ₁₆ 5	103.22	-26.8075
Ag ₃ PdF ₁₂ Cu ₃ SbF ₁₂ 1	81.41	-6.17149	$Ag_{28}Pd_{14}F_3_Ba_3(RhO_2)_{14}_5$	108.25	-63.498
AgPdF ₄ _NaYF ₄ _3	82.55	-28.4262	AgPd ₂ F ₅ _TmMn ₂ O ₅ _5	108.83	-185.458
AgPdF ₆ NaVF ₆ 3	83.18	-129.149	AgPd ₅ F ₁₀ NaTi ₅ O ₁₀ 5	108.94	-13.1986
$Ag_3Pd_3F_{10}_Tl_3Os_3O_{10}_3$	83.53	-21.0172	Ag ₂ PdF ₆ Ca ₂ H ₆ Os_3	109.13	-58.9395
$Ag_{14}Pd_{10}F_{39}Nb_{10}Pb_{14}O_{39}1$	84.03	-84.4339	Ag ₃ Pd ₅ F_Li ₅ TiN ₃ _5	110.04	-148.501
AgPd ₈ F ₁₆ BaTi ₈ O ₁₆ 2	85.26	-6.04457	Ag ₁₅ Pd ₃₂ F ₂ K ₂ Ta ₁₅ O ₃₂ 5	110.09	-130.502
Ag ₃ Pd ₅ F ₁₂ La ₃ Sb ₅ O ₁₂ 1	86.43	-48.0782	Ag2Pd15F32_K2Ta15O32_1	110.23	-44.784
$Ag_{21}Pd_{14}F_{47}Sr_{21}Fe_{14}O_{47}3$	86.51	-54.3525	Ag ₆ Pd ₇ F ₂ _Li ₆ Hf ₂ O ₇ _6	111.61	-46.1788
Ag ₅ Pd ₁₃ F ₃₀ Mg ₅ Ti ₁₃ O ₃₀ 5	90.14	-74.326	$Ag_{32}Pd_{16}F_{3}Rb_{3}Mn_{16}O_{32}2$	111.71	-214.463
AgPd ₉ F ₂₅ Nb ₉ VO ₂₅ 3	90.23	-21.5549	$Ag_{3}Pd_{20}F_{40}Ba_{3}Ti_{20}O_{40}2$	114.76	-16.3421
AgPd ₂ F ₆ Tm ₂ WO ₆ 6	90.34	-82.0771	$Ag_{12}Pd_6F_Rb(IrO_2)_6_6$	114.92	-31.8258
AgPdF ₆ _LiMnF ₆ _4	90.48	-73.649	Ag ₂ Pd ₃ F ₇ Ca ₃ Fe ₂ O ₇ 3	115.52	-38.4261
AgPdF ₃ _YReN ₃ _6	90.49	-51.9733	Ag ₅ Pd ₄ F_CeU ₄ N ₅ _5	116.45	-176.359
Ag ₈ Pd ₃ F_Ti ₈ Cu ₃ Ni_4	90.57	-9.13317	Ag ₁₇ Pd ₁₂ F_Ti ₁₇ CuP ₁₂ _6	116.95	-64.2842
Ag ₃ PdF ₆ Ca ₃ WO ₆ 2	90.91	-80.4506	Ag ₇ Pd ₁₂ F_Mn ₇ GeO ₁₂ _6	118.10	-55.3586
$AgPd_2F_{12}BaAs_2F_{12}2$	92.35	-61.701	Ag ₁₀ Pd ₄ F_ZrU ₄ O ₁₀ _3	119.00	-7.56993
AgPd ₁₃ F ₃₃ NaNb ₁₃ O ₃₃	93.03	-0.087	Ag ₃ Pd ₂ F_Nb ₃ AlC ₂ _2	120.97	-186.84
Ag ₃ Pd ₁₆ F ₃₂ _Rb ₃ Mn ₁₆ O ₃₂ _5	93.68	-113.649	AgPdF ₄ _ZnCrO ₄ _4	121.91	-36.4862
AgPd ₃ F ₁₂ Cu ₃ SbF ₁₂ 3	93.98	-96.9939	AgPdF ₃ _LaAlO ₃ _3	122.81	-223.579
$Ag_2PdF_{12}CaCr_2F_{12}_4$	94.02	-80.2395	Ag ₃ Pd ₈ F_Ti ₈ Cu ₃ Ni_2	124.78	-43.5242
Ag ₃ PdF ₆ Pr ₃ GaO ₆ 5	94.33	-66.3199	$Ag_{40}Pd_{20}F_{3}Ba_{3}Ti_{20}O_{40}5$	124.84	-9.61277
AgPd ₂ F ₆ Hg(SbO ₃) ₂ 1	94.76	-45.3916	AgPdF ₃ _TaTlO ₃ _3	125.37	-23.2981
AgPd ₆ F ₁₂ _Rb(IrO ₂) ₆ _1	94.80	-139.27	AgPd ₈ F ₁₄ BaNb ₈ O ₁₄ 3	129.25	-95.3692
$Ag_{12}Pd_8F_3_Al_3(V_3C_2)_4_4$	95.68	-67.3996	AgPdF ₃ _GdInO ₃ _1	129.35	-187.974

Ag ₂ PdF ₅ Ce ₂ TiO ₅ 2	129.57	-136.435	$Ag_4Pd_8F_Rb(RuO_2)_4_5$	155.40	-138.346
$Ag_8Pd_{19}F_2_U_8Bi_2O_{19}_2$	130.14	-73.3638	$Ag_4Pd_{10}F_ZrU_4O_{10}1$	156.93	-27.6176
$Ag_2Pd_7F_{16}Sr_2Zr_7O_{16}5$	131.27	-50.9413	$Ag_2Pd_2F_5Nd_2Pd_2O_5_4$	159.14	-186.729
$Ag_{12}Pd_{17}F_Ti_{17}CuP_{12}_5$	131.27	-7.68368	Ag ₂ Pd ₁₆ F_Sm ₂ TiCo ₁₆ _3	160.15	-93.7587
AgPd ₂ F ₆ YU ₂ O ₆ 3	131.48	-186.729	Ag ₇ Pd ₁₂ F_Y ₇ HoO ₁₂ _2	160.98	-72.1349
Ag ₆ Pd ₂₃ F_Zr ₆ Zn ₂₃ Si_4	132.60	-93.7587	Ag ₈ Pd ₃ F_TaSb ₃ O ₈ _6	161.09	-280.35
$Ag_4Pd_9F_2_Mg_4Sb_2O_9_5$	133.76	-105.041	Ag ₆ Pd ₈ F_Na ₈ CoO ₆ _6	162.14	-39.1154
$Ag_{19}Pd_{32}F_{5}Mg_{5}Co_{19}O_{32}2$	136.14	-46.6634	Ag ₅ Pd ₁₂ F_U ₅ ClO ₁₂ _2	163.39	-247.148
$Ag_{3}PdF_{12}Er(ReO_{4})_{3}1$	136.51	-76.7524	Ag ₈ Pd ₄ F_Rb(RuO ₂) ₄ _6	164.27	-15.0542
Ag ₆ Pd ₆ F_Hf ₆ Zn ₆ N_6	136.51	-6.733	Ag ₁₄ Pd ₄ F_Li ₁₄ MgSi ₄ _4	165.35	-225.423
AgPd ₆ F_EuZrF ₆ _6	136.98	-206.04	Ag9PdF27_Na(WO3)9_6	165.50	-2.44645
Ag ₂ PdF ₆ Sr ₂ CuH ₆ 4	137.23	-147.775	Ag ₃ Pd ₁₅ F_LuZr ₃ F ₁₅ _6	165.57	-79.7658
Ag ₁₁ Pd ₈ F_Ti ₁₁ CuP ₈ _6	138.92	-57.9511	Ag ₂₀ Pd ₉ F ₃ Mg ₃ Ti ₉ O ₂₀ 2	166.38	-92.4291
Ag ₅ Pd ₁₆ F_Ni ₁₆ GeP ₅ _2	139.22	-65.7131	$Ag_3Pd_{17}F_2_Tm_2Fe_{17}C_3_3$	166.75	-303.77
$Ag_{12}Pd_{37}F_2Al_{37}(Fe_6Cu)_2_6$	140.97	-88.0762	$Ag_{19}Pd_8F_2U_8Bi_2O_{19}_4$	167.68	-1.83543
Ag ₅ Pd ₁₀ F_NaTi ₅ O ₁₀ _4	142.22	-61.5011	Ag ₈ Pd ₁₁ F_Ti ₁₁ CuP ₈ _5	167.92	-51.1568
$Ag_9Pd_{39}F_2_Al_2(Zn_{13}Pd_3)_3_4$	142.85	-185.207	Ag ₆ Pd ₅ F_Li ₅ IO ₆ _5	168.57	-131.165
Ag ₃₂ Pd ₂₁ F ₃ Co ₂₁ Cu ₃ O ₃₂ 4	143.02	-134.801	Ag ₁₃ Pd ₅ F_NaSb ₅ O ₁₃ _4	168.69	-77.3433
Ag ₁₁ PdF ₃₃ _La(WO ₃) ₁₁ _4	143.42	-49.3241	$Ag_2Pd_5F_2Ba_2Sc_2O_5_5$	169.22	-16.0313
Ag ₃₃ Pd ₁₃ F_NaNb ₁₃ O ₃₃ _4	144.05	-55.1175	Ag ₁₅ Pd ₃ F_Zr ₃ TlF ₁₅ _5	169.33	-119.635
Ag ₄ PdF_InSbO ₄ _4	145.67	-62.1171	Ag9Pd2F_CsU2F9_6	171.21	-247.613
Ag ₁₄ Pd ₂₈ F ₃ Ba ₃ (RhO ₂) ₁₄ 6	146.04	-351.317	$Ag_2Pd_7F_{15}Mg_2Ti_7O_{15}5$	171.26	-79.6034
$Ag_{3}Pd_{20}F_BiSb_{3}F_{20}_2$	146.85	-61.048	Ag ₁₆ Pd ₈ F_BaMn ₈ O ₁₆ _5	171.98	-156.032
Ag ₄ Pd ₂ F_Sr(RhO ₂) ₂ _2	147.37	-12.2346	Ag ₃ Pd ₁₅ F_Zr ₃ TlF ₁₅ _6	172.66	-188.964
Ag ₃ Pd ₂ F ₇ Ca ₃ Fe ₂ O ₇ 1	147.79	-41.8916	Ag ₄ PdF ₄ _Ca ₄ ZrN ₄ _5	173.81	-0.21635
AgPd ₇ F ₁₂ Mn ₇ GeO ₁₂ 2	148.97	-119.056	Ag ₁₂ Pd ₂ F_BaSb ₂ F ₁₂ _6	174.26	-7.5345
AgPd ₂ F ₅ Sc ₂ TiO ₅ 4	149.08	-243.101	Ag ₂ Pd ₁₁ F_NdHf ₂ F ₁₁ _1	174.76	-157.055
Ag ₅ Pd ₁₃ F_NaSb ₅ O ₁₃ _2	149.19	-73.2497	$Ag_{39}Pd_9F_2Al_2(Zn_{13}Pd_3)_3_2$	175.91	-90.9663
Ag ₉ Pd ₉ F_Sc(TiN) ₉ _5	150.10	-378.699	Ag ₁₉ Pd ₃₂ F ₅ Zn ₅ Co ₁₉ O ₃₂ 2	175.93	-87.852
Ag ₁₆ Pd ₈ F_Mn ₈ PbO ₁₆ _5	152.43	-87.9495	AgPdF4_CoSi4Ni_4	176.02	-51.0456
Ag ₁₂ Pd ₄ F_Mn ₁₂ Pt ₄ N_6	152.79	-145.05	$Ag_3Pd_{13}F_U_3TIF_{13}_2$	176.40	-197.226
AgPd ₂ F ₆ _Cs(OsO ₃) ₂ _3	153.67	-42.9381	$Ag_4Pd_{12}F_Mn_{12}Pt_4N_5$	176.86	-108.329
Ag ₆ Pd ₃ F ₂ Na ₂ Nb ₃ O ₆ 4	155.20	-2.11018	Ag ₂₅ Pd ₉ F_Nb ₉ VO ₂₅ _4	177.35	-88.585

AgPd ₃ F ₆ _Ni(PtO ₂) ₃ _3	177.47	-36.2138	$Ag_8Pd_2F_BaLu_2F_8_6$	190.86	-57.4004
Ag ₂ PdF_GaCuO ₂ _5	178.70	-0.81872	$Ag_{10}Pd_3F_Y_3TlF_{10}_6$	191.59	-7.52956
Ag ₂ PdF ₄ _Eu ₂ TiO ₄ _2	178.80	-72.1349	Ag ₉ Pd ₃ F_ErTa ₃ O ₉ _4	191.67	-76.512
Ag ₁₇ PdF_CeUZn ₁₇ _5	179.29	-280.35	$Ag_{12}Pd_6F_Lu_6WO_{12}_3$	192.06	-32.751
Ag ₈ Pd ₁₄ F_BaNb ₈ O ₁₄ _2	179.32	-76.512	Ag ₅ Pd ₃ F_RbIn ₃ O ₅ _6	192.11	-146.646
$Ag_{12}Pd_5F_2_Y_5U_2O_{12}_6$	179.40	-32.751	$Ag_2Pd_4F_Y_2HgO_4_5$	192.37	-50.6997
Ag ₇ Pd ₃ F_Er ₃ TaO ₇ _6	180.77	-58.4261	Ag ₄ Pd ₃ F_Fe ₃ NiP ₄ _5	192.65	-173.734
Ag ₂₃ Pd ₆ F_Zr ₆ Zn ₂₃ Si_2	181.02	-46.5211	AgPd ₅ F ₁₂ LaSb ₅ O ₁₂ 1	193.20	-203.665
Ag ₅ Pd ₄ F_Li ₄ WO ₅ _2	182.05	-1.55947	Ag ₄ Pd ₂ F_Co ₂ Mo ₄ N_4	193.38	-102.994
$Ag_{33}Pd_{12}F_Ta_{12}MoO_{33}_4$	182.28	-50.439	Ag ₁₅ Pd ₃ F_LuZr ₃ F ₁₅ _5	193.65	-449.295
AgPd ₃ F ₇ Ta ₃ O ₇ F_3	182.31	-44.0388	Ag9Pd2F_NaU2F9_4	194.03	-132.817
$Ag_{27}Pd_4F_2Al_{27}(FeNi_2)_2_3$	183.30	-135.39	Ag ₅ Pd ₃ F_Ti ₅ Si ₃ C_6	194.04	-140.792
Ag ₁₀ Pd ₃ F_CsSc ₃ F ₁₀ _4	184.33	-144.849	Ag ₅ Pd ₂ F_Sc ₂ TiO ₅ _3	195.08	-147.246
Ag ₆ PdF ₈ _Li ₆ NiCl ₈ _6	185.02	-24.2321	Ag ₂ PdF_CuAuO ₂ _6	195.69	-1.20392
Ag ₃ PdF_FeSnO ₃ _2	185.72	-33.5981	Ag5PdF5_Ca5NbN5_6	197.83	-220.301
Ag ₄ Pd ₂ F_MgV ₂ O ₄ _6	185.79	-72.8006	$Ag_{16}Pd_7F_2_Sr_2Zr_7O_{16}_2$	198.81	-16.3957
Ag ₉ Pd ₂₅ F_Nb ₉ VO ₂₅ _2	186.75	-22.1714	Ag ₃₃ Pd ₁₁ F_La(WO ₃) ₁₁ _5	198.89	-100.383
$Ag_{11}Pd_{25}F_{60}Mg_{11}Ti_{25}O_{60}5$	187.32	-108.134	Ag ₅ Pd ₅ F_Li ₅ TaO ₅ _5	199.25	-104.999
Ag ₂₇ Pd ₁₀ F ₄ Y ₁₀ U ₄ O ₂₇ 6	188.14	-50.2952	Ag ₃ Pd ₈ F_TaSb ₃ O ₈ _5	199.25	-248.025
Ag ₁₀ Pd ₆ F_Nb ₁₀ Ge ₆ C_1	188.28	-382.185	Ag ₂₇ Pd ₇ F ₉ Na ₇ (WO ₃) ₉ 1	199.36	-41.2104
$AgPd_{2}F_{4}SrSc_{2}O_{4}3$	188.38	-49.2118	$Ag_{47}Pd_{17}F_3Sm_3Ta_{17}O_{47}5$	200.11	-28.6526
$Ag_6Pd_{12}F_Rb(IrO_2)_6_5$	188.67	-92.2219	$Ag_2Pd_{14}F_Y_2Fe_{14}C_5$	200.23	-376.015
Ag ₂₇ Pd ₉ F_Na(WO ₃)9_2	188.79	-64.0385	Ag ₇ PdF_LuPtF ₇ _6	200.56	-11.1168
$Ag_2Pd_7F_InPb_2F_7_1$	189.37	-224.212	$Ag_2Pd_2F_{11}_Ta_2Mo_2O_{11}_3$	201.92	-127.655
Ag ₄ Pd ₅ F_Li ₅ AuO ₄ _5	189.51	-5.50317	AgPd ₇ F_LuHfF ₇ _2	201.98	-138.162
Ag ₆ Pd ₃ F_Ta ₃ NO ₆ _6	189.57	-46.401	AgPdF4_GdAsO4_6	202.00	-225.835
AgPd ₂ F ₅ _Lu ₂ TiO ₅ _4	189.65	-37.4264	$Ag_6Pd_{11}F_5_Zn_6B_5Ir_{11}_2$	202.13	-160.692
Ag ₂ PdF_CrAuO ₂ _5	190.05	-89.0534	Ag ₄ Pd ₃ F_LiTa ₃ N ₄ _1	202.28	-26.8036
Ag ₂ Pd ₅ F_Lu ₂ TiO ₅ _1	190.15	-156.023	AgPd ₄ F_KGdF ₄ _2	202.30	-32.3361
Ag ₃ Pd ₂ F_Li ₂ IrO ₃ _2	190.42	-208.024	$Ag_{12}Pd_5F_2Lu_5(ReO_6)_2_4$	202.56	-233.639
Ag ₁₀ Pd ₅ F_NaTi ₅ O ₁₀ _2	190.55	-77.2326	Ag ₂ Pd ₆ F_YU ₂ O ₆ _2	203.04	-29.5574
AgPd ₂ F ₄ _Y ₂ HgO ₄ _1	190.55	-72.1971	Ag ₁₅ PdF ₃ LuZr ₃ F ₁₅ 3	203.56	-33.1499
Ag ₉ Pd ₉ F_Sc(TiN) ₉ _6	190.71	-44.4881	$Ag_{10}Pd_{27}F_{4}Y_{10}U_{4}O_{27}5$	203.59	-216.42

Ag ₁₉ Pd ₇ F_PrTa ₇ O ₁₉ _4	204.27	-80.7474	AgPd ₇ F_LuZrF ₇ _1	215.49	-13.2492
AgPd ₂ F ₄ _Sr(RhO ₂) ₂ _5	204.50	-105.203	Ag ₅₇ Pd ₁₇ F ₁₉ Na ₁₇ (WO ₃) ₁₉ 1	215.57	-242.378
AgPd ₂ F ₄ _SrNb ₂ O ₄ _3	205.03	-291.572	$Ag_{37}Pd_{12}F_{2}Al_{37}(Fe_{6}Cu)_{2}5$	215.66	-98.0154
$Ag_6Pd_{21}F_2Ni_{21}(GeB_3)_2_5$	205.35	-146.646	Ag ₂₀ Pd ₃ F_BiSb ₃ F ₂₀ _4	215.84	-47.4357
Ag ₄ Pd ₂ F_Y ₂ HgO ₄ _6	205.50	-98.0154	$AgPd_{14}F_2Y_2Fe_{14}C_2$	216.26	-70.3745
Ag ₇ PdF_LuZrF ₇ _3	205.54	-47.4357	Ag ₆ Pd ₂ F_Na ₂ CeF ₆ _6	216.71	-31.7872
Ag ₄ Pd ₂ F_SrNb ₂ O ₄ _4	205.66	-233.762	Ag ₃ Pd ₈ F_NaSb ₃ O ₈ _2	216.74	-141.239
Ag ₆ PdF_ZnCrF ₆ _5	206.43	-81.1883	Ag ₄ Pd ₂ F_Ca(AgO ₂) ₂ _6	216.92	-57.1278
$Ag_9Pd_4F_2_Mg_4Sb_2O_9_6$	207.28	-37.9809	Ag ₆ Pd ₂ F_K ₂ SnF ₆ _3	217.35	-68.1588
Ag ₂ Pd ₆ F_Ni(IO ₃) ₂ _2	207.42	-1.34899	Ag ₁₂ Pd ₇ F_Y ₇ HoO ₁₂ _4	217.50	-163.293
Ag ₇ Pd ₂ F_InPb ₂ F ₇ _3	207.78	-66.8612	Ag ₂ Pd ₃ F_Na ₂ PdO ₃ _5	218.26	-17.1154
Ag ₆ Pd ₂ F_LiCu ₂ F ₆ _3	207.82	-288.595	$Ag_3Pd_4F_LiTa_3N_4_3$	218.50	-38.2704
$Ag_5Pd_{12}F_2_Lu_5(ReO_6)_2_2$	207.87	-76.4566	$Ag_{2}Pd_{7}F_{12}U_{2}Co_{12}P_{7}6$	219.34	-86.7713
$Ag_{12}Pd_4F_3_Lu_4Hf_3O_{12}_6$	208.17	-122.112	Ag ₃ Pd ₂ F_Mg ₂ NbN ₃ _2	219.59	-61.6421
Ag ₄ Pd ₅ F_Na ₅ FeO ₄ _4	208.22	-29.6253	Ag ₇ Pd ₂ F_KTm ₂ F ₇ _5	219.64	-137.693
Ag ₅ Pd ₆ F_Li ₅ OsO ₆ _6	208.37	-82.0838	Ag ₃ Pd ₇ F_Er ₃ TaO ₇ _5	220.77	-103.329
Ag ₆ PdF_BaIrF ₆ _3	209.12	-49.2166	Ag ₄ Pd ₅ F_Li ₄ WO ₅ _4	220.95	-34.4964
$Ag_{16}Pd_6F_5_Mg_6Te_5O_{16}_6$	210.05	-179.091	$Ag_{12}Pd_5F_U_5ClO_{12}_4$	221.12	-84.8178
$Ag_5Pd_8F_Co_5SbO_8_2$	210.12	-117.256	AgPd ₇ F_LuPtF ₇ _2	221.55	-19.4336
Ag7Pd6F_Li7BiO6_4	210.55	-62.2568	Ag ₂ Pd ₄ F_Ni(AsO ₂) ₂ _4	222.68	-1.53055
Ag ₇ PdF_BaWF ₇ _3	211.08	-201.194	$Ag_{12}PdF_MnAl_{12}Fe_2$	223.63	-200.8
$Ag_4Pd_3F_Ti_4GaC_3_4$	211.18	-73.1576	$Ag_3Pd_6F_Li_3FeF_6_4$	223.82	-342.572
$Ag_7Pd_{31}F_6Zr_6Ag_7F_{31}1$	211.58	-32.1621	$Ag_{27}Pd_9F_8_Ba_9Rh_8O_{27}_3$	224.10	-27.7994
Ag ₁₅ PdF ₃ Zr ₃ TlF ₁₅ 3	211.72	-209.998	Ag ₇ Pd ₃ F_Na ₃ CeF ₇ _6	224.30	-0.93723
Ag ₇₉ Pd ₂₂ F ₁₀ K ₁₀ Gd ₂₂ F ₇₉ 6	211.80	-65.1588	AgPdF ₃ _CaH ₃ Pd_3	224.40	-189.205
AgPd ₄ F ₄ _Th(BOs) ₄ _6	212.27	-85.3583	Ag ₁₇ Pd ₄₇ F ₃ Sm ₃ Ta ₁₇ O ₄₇ 6	224.48	-68.743
Ag ₃ Pd ₈ F_Ho ₃ ReO ₈ _5	212.63	-74.6606	AgPd ₂ F ₅ _Ti ₂ CoO ₅ _2	224.50	-127.372
$Ag_6Pd_{12}F_Lu_6TeO_{12}_2$	213.20	-315.678	$Ag_9Pd_{60}F_{20}K_9(WO_3)_{20}1$	224.67	-112.685
AgPd ₉ F ₂ _NaU ₂ F ₉ _5	214.63	-66.5408	Ag ₅ Pd ₄ F_Li ₅ AuO ₄ _6	224.92	-26.114
Ag ₂ Pd ₆ F_Tm ₂ WO ₆ _3	214.70	-34.4413	Ag ₅ Pd ₄ F_Na ₅ FeO ₄ _2	225.15	-152.496
$Ag_{21}Pd_2F_5_Dy_2Au_5F_{21}_6$	215.09	-6.2665	Ag ₈ Pd ₄ F_CaNb ₄ O ₈ _4	225.81	-6.6502
Ag ₂ Pd ₆ F_Nb ₂ CdO ₆ _5	215.16	-197.532	$Ag_{13}Pd_3F_U_3TlF_{13}_4$	226.57	-33.0538
Ag ₆ PdF_LiWF ₆ _5	215.29	-248.274	AgPdF ₃ _ScGaO ₃ _4	227.19	-64.0804

$Ag_{16}Pd_5F_5_La_5Mn_5O_{16}_3$	227.56	-38.5266	$Ag_{60}Pd_{25}F_{11}Mg_{11}Ti_{25}O_{60}2$	243.02	-120.07
$Ag_8Pd_3F_2_Mg_2Mn_3O_8_2$	227.76	-59.1424	$AgPd_{15}F_3_LuZr_3F_{15}_1$	243.51	-76.7728
$Ag_2Pd_3F_8_Ca_2V_3O_8_1$	228.04	-17.0943	Ag ₂ Pd ₅ F_Ti ₂ CoO ₅ _6	244.26	-45.4478
Ag ₃ Pd ₂ F_Li ₂ RhO ₃ _5	228.63	-70.3745	Ag9Pd2F_KPu2F9_6	245.03	-88.5688
$Ag_2Pd_{17}F_2_Ce_2Mn_{17}C_2_2$	228.74	-88.5688	$Ag_2Pd_6F_Sb_2WO_6_3$	245.11	-21.8024
$Ag_9Pd_4F_2_Ca_4Ta_2O_9_3$	229.33	-150.9	Ag ₂ Pd ₉ F_NaU ₂ F ₉ _2	245.26	-169.867
Ag ₁₃ Pd ₃₃ F_NaNb ₁₃ O ₃₃ _2	229.41	-76.3499	Ag ₃ PdF ₆ _Ni(PtO ₂) ₃ _1	245.42	-169.502
$Ag_2Pd_{27}F_4_Al_{27}(FeNi_2)_2_6$	230.18	-21.5069	$Ag_{32}Pd_{16}F_{3}Sr_{3}(RhO_{2})_{16}2$	245.51	-31.0111
$Ag_9Pd_{20}F_3Mg_3Ti_9O_{20}4$	230.19	-35.4435	Ag ₇ Pd ₂₇ F ₉ Na ₇ (WO ₃) ₉ 3	245.80	-36.1462
AgPd ₃ F ₇ _Lu ₃ SbO ₇ _3	230.47	-410.865	AgPd ₅ F_CeTlF ₅ _5	245.80	-87.784
$Ag_{12}Pd_7F_2_Co_7(SbO_6)_2_4$	230.61	-81.569	$Ag_2Pd_7F_2_Ta_2Pb_2O_7_2$	246.36	-22.8747
Ag ₃ Pd ₁₀ F_Y ₃ TlF ₁₀ _5	231.20	-69.5255	AgPdF ₄ _NaErF ₄ _1	246.55	-209.054
Ag ₆ Pd ₁₆ F_BaTa ₆ O ₁₆ _6	231.50	-104.025	AgPd ₁₇ F_SmGdCo ₁₇ _3	246.79	-51.7456
$Ag_2Pd_2F_Zr_2N_2O_2$	231.62	-18.1605	Ag ₂ Pd ₄ F_Cd ₂ PbO ₄ _2	247.97	-30.6302
$Ag_5Pd_{12}F_2Y_5U_2O_{12}5$	232.05	-166.714	Ag ₇ PdF_LuHfF ₇ _4	248.51	-61.5528
Ag ₅ Pd ₃ F_Li ₅ TiN ₃ _6	232.49	-252.104	Ag ₆ PdF ₂ _Ni(BiO ₃) ₂ _6	249.91	-199.79
Ag ₂ Pd ₃ F_NbZn ₂ N ₃ _4	232.51	-13.9012	Ag ₅ Pd ₄ F_Li ₅ OsN ₄ _4	250.05	-258.617
Ag ₁₆ Pd ₇ F ₅ Li ₅ Mn ₇ O ₁₆ 1	234.36	-52.5709	Ag ₈ Pd ₂ F_BaY ₂ F ₈ _6	250.21	-39.8305
$Ag_8Pd_5F_2_Sr_5(AuO_4)_2_6$	234.41	-46.3477	AgPd ₁₅ F ₃ _Zr ₃ TlF ₁₅ _1	250.55	-286.947
$Ag_{12}Pd_4F_3_Lu_4Zr_3O_{12}_3$	234.92	-167.862	Ag ₈ Pd ₅ F_BaNb ₅ O ₈ _4	251.30	-28.4374
Ag ₄ Pd ₃ F_Mg ₃ MoN ₄ _5	235.01	-30.3173	Ag ₁₅ Pd ₁₇ F ₆ Zn ₁₅ B ₆ Rh ₁₇ 2	251.53	-108.766
Ag ₆ Pd ₂ F_Ni(IO ₃) ₂ _4	235.99	-218.835	$Ag_3Pd_{10}F_2_La_3U_2O_{10}_5$	251.80	-25.2155
AgPd ₂₀ F ₃ BiSb ₃ F ₂₀ 5	236.11	-187.547	$Ag_{12}Pd_5F_4_Li_4Mn_5O_{12}_1$	252.30	-49.6729
AgPd ₂ F_ZnMoN ₂ _4	236.59	-37.9337	Ag ₇ PdF_LuPtF ₇ _4	253.01	-218.173
$Ag_{21}Pd_{6}F_{2}Cr_{21}(WC_{3})_{2}4$	236.70	-107.909	Ag ₄ Pd ₁₇ F ₃ _Sr ₄ Lu ₃ F ₁₇ _6	253.26	-19.098
AgPd ₄ F_NbGaO ₄ _6	237.54	-22.8039	Ag ₂ Pd ₃ F_Mg ₂ ReN ₃ _4	253.32	-122.845
Ag ₆ PdF_BaHfF ₆ _3	238.25	-365.682	AgPdF ₄ _GdYH ₄ _4	253.84	-186.765
Ag ₃ Pd ₁₅ F_Zr ₃ InF ₁₅ _4	238.58	-162.002	Ag ₁₇ Pd ₈ F ₃ K ₃ Ti ₈ O ₁₇ 5	254.09	-100.626
Ag ₂ Pd ₆ F_Tm ₂ TeO ₆ _5	240.01	-96.1291	Ag ₃ Pd ₂ F_Li ₂ PtO ₃ _5	254.74	-17.4412
AgPd ₂ F_CrAuO ₂ _6	240.56	-76.9975	Ag ₃ Pd ₅ F ₁₂ La ₃ Ga ₅ O ₁₂ 2	255.65	-36.1971
Ag ₁₀ Pd ₃ F_KLu ₃ F ₁₀ _6	241.07	-85.8935	AgPd ₇ F_LuPtF ₇ _5	259.10	-98.78
$Ag_7Pd_{12}F_2U_2Co_{12}P_7_3$	241.60	-22.5405	$Ag_3Pd_{12}F_4_Lu_4Hf_3O_{12}_2$	259.74	-242.992
$Ag_5Pd_{15}F_4_Sr_5Nb_4O_{15}_5$	241.63	-266.019	AgPd ₇ F_BaWF ₇ _1	259.84	-63.0038

$Ag_2Pd_2F_7_Y_2Pt_2O_7_1$	259.99	-122.832	Ag ₆ Pd ₃ F_Na ₃ InF ₆ _4	272.84	-83.3383
$Ag_9Pd_{28}F_5_Y_9U_5O_{28}_5$	261.24	-106.237	$Ag_4Pd_{12}F_3_Lu_4Hf_3O_{12}_5$	273.80	-14.9087
Ag2Pd6F_Li2SnF6_6	261.39	-68.7846	Ag ₃ Pd ₄ F_Ti ₄ GaC ₃ _2	274.42	-153.03
$Ag_{17}Pd_2F_2_Th_2Mn_{17}C_2_6$	261.45	-21.8024	$Ag_9Pd_{30}F_{10}Ba_9Nb_{10}O_{30}5$	275.57	-156.49
Ag ₁₁ Pd ₂₄ F ₇ _Li ₇ Ti ₁₁ O ₂₄ _1	261.57	-156.49	AgPd ₁₂ F_MnAl ₁₂ Fe_4	276.08	-270.221
$\label{eq:4.1} Ag_{16}Pd_{39}F_{12}_Sr_{16}V_{12}O_{39}_5$	262.12	-177.03	Ag ₂ Pd ₆ F_Li ₂ AgF ₆ _6	276.32	-23.6659
AgPdF2_SrCuO2_3	262.16	-136.515	$Ag_5Pd_{12}F_3_Dy_3Y_5O_{12}_5$	276.51	-48.7679
$Ag_{11}Pd_4F_4Ba_4Fe_4O_{11}_4$	263.53	-55.4561	Ag ₃ Pd ₅ F_Ti ₅ Si ₃ C_5	276.92	-50.4749
Ag ₁₁ PdF ₂ NdHf ₂ F ₁₁ 5	263.89	-6.21723	Ag ₂ PdF ₈ Mg(ReO ₄) ₂ 1	277.15	-104.763
Ag ₂ Pd ₄ F_MgV ₂ O ₄ _5	264.34	-35.6865	Ag ₂ Pd ₄ F_SrNb ₂ O ₄ _2	277.48	-93.479
Ag ₃₂ Pd ₁₅ F ₂ K ₂ Ta ₁₅ O ₃₂ 6	264.86	-186.441	Ag ₂ PdF ₁₂ _CaAs ₂ F ₁₂ _4	277.76	-141.222
Ag ₃ Pd ₆ F ₂ Na ₂ Nb ₃ O ₆ 2	265.22	-158.753	Ag ₁₆ Pd ₃₂ F ₃ Sr ₃ (RhO ₂) ₁₆ 4	278.15	-162.077
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	265.47	-196.521	Ag ₃ Pd ₁₄ F_Pr ₃ MgNi ₁₄ _4	278.79	-213.02
Ag ₄ Pd ₃ F_Li ₃ RuO ₄ _2	266.02	-125.55	AgPd ₈ F ₃ NaSb ₃ O ₈ 5	279.30	-108.997
Ag ₁₇ Pd ₅₇ F ₁₉ Na ₁₇ (WO ₃) ₁₉ 3	267.50	-164.305	$Ag_5Pd_3F_{12}Lu_3Sb_5O_{12}3$	279.34	-46.5239
AgPd ₁₄ F ₈ BaNb ₈ O ₁₄ 5	267.68	-40.2011	Ag ₅ Pd ₅ F_Li ₅ TaO ₅ _6	279.90	-173.357
Ag ₃ PdF_Ti ₃ ZnN_6	267.87	-240.754	Ag ₃ Pd ₁₀ F_GaNi ₁₀ P ₃ _1	280.22	-94.2098
$Ag_{10}Pd_9F_4Na_{10}Zn_4O_9_5$	267.97	-20.7267	Ag ₄ PdF_MgTeO ₄ _4	280.65	-60.7341
$Ag_6Pd_{10}F_V_{10}Si_6B_2$	268.38	-112.244	$Ag_{15}Pd_5F_4_Sr_5Nb_4O_{15}_6$	282.21	-187.425
Ag ₂ Pd ₃ F_MgTa ₂ N ₃ _3	269.09	-167.509	Ag ₂ Pd ₂ F_Hf ₂ N ₂ O_1	282.82	-23.656
$\label{eq:constraint} Ag_6Pd_{11}F_3_La_6Ga_3Co_{11}_3$	269.25	-151.665	Ag ₃ Pd ₉ F ₂ Nd ₃ Re ₂ O ₉ 6	282.88	-43.3503
$Ag_4Pd_9F_2_Ca_4Ta_2O_9_1$	269.30	-169.19	Ag ₁₄ Pd ₂ F_Y ₂ Fe ₁₄ C_6	283.18	-88.5901
Ag ₃ Pd ₈ F_Ta ₃ Mn ₈ Al_2	269.46	-282.237	$Ag_7Pd_{15}F_2Mg_2Ti_7O_{15}4$	283.82	-58.7183
Ag ₁₂ Pd ₃₃ F_Ta ₁₂ MoO ₃₃ _2	269.54	-49.7953	$Ag_2Pd_5F_K_2LuF_5_2$	284.31	-40.9337
Ag ₁₂ Pd ₇ F_Mn ₇ GeO ₁₂ _5	269.78	-46.5234	Ag ₄ Pd ₅ F_Li ₅ OsN ₄ _2	285.24	-65.3635
Ag ₁₄ Pd ₈ F_BaNb ₈ O ₁₄ _4	269.78	-223.258	Ag ₃ Pd ₈ F_Zr ₃ AlFe ₈ _6	285.41	-6.09693
$Ag_5Pd_{16}F_5_La_5Mn_5O_{16}_1$	270.96	-175.845	Ag ₈ Pd ₆ F_Na ₈ CoO ₆ _5	285.44	-231.923
$Ag_{6}Pd_{17}F_{3}Sm_{6}U_{3}O_{17}2$	271.03	-94.0328	AgPd ₄ F_InSbO ₄ _5	285.77	-29.7424
$Ag_{32}Pd_{19}F_{5}Mg_{5}Co_{19}O_{32}4$	271.45	-64.6279	Ag ₄ Pd ₂ F_AlV ₂ O ₄ _6	286.43	-222.105
$Ag_4Pd_2F_Cd_2PbO_4_4$	272.14	-16.6244	$Ag_2Pd_8F_BaLu_2F_8_5$	287.21	-220.451
$AgPd_{10}F_3_CsSc_3F_{10}_5$	272.38	-7.88562	Ag ₂ Pd ₇ F_KTm ₂ F ₇ _6	287.28	-213.548
AgPd ₄ F_NaYF ₄ _2	272.57	-52.0381	$Ag_2Pd_{32}F_{15}K_2Ta_{15}O_{32}2$	287.34	-14.2512
$Ag_7Pd_{16}F_2_Sr_2Zr_7O_{16}_4$	272.62	-96.6174	$Ag_9Pd_{27}F_8_Ba_9Rh_8O_{27}_1$	287.84	-136.808

Ag ₂ Pd ₅ F_Na ₂ VF ₅ _5	287.93	-132.332	AgPd ₆ F_CuPdF ₆ _6	303.07	-5.64407
Ag ₁₃ Pd ₃₀ F ₅ Mg ₅ Ti ₁₃ O ₃₀ 4	288.93	-56.2031	$Ag_5Pd_6F_2_Sc_6N_2O_5_4$	303.78	-11.4766
AgPd ₄ F_MgTeO ₄ _2	289.28	-270.221	AgPd ₁₀ F ₃ CsLu ₃ F ₁₀ 2	303.99	-262.362
AgPd ₂ F_Ti ₂ CN_5	289.33	-23.6659	$Ag_{24}Pd_{15}F_{4}Ti_{4}(Ni_{5}O_{8})_{3}1$	305.48	-157.867
Ag ₂ Pd ₃ F_Li ₂ IrO ₃ _4	289.40	-35.9554	Ag ₂ Pd ₆ F_K ₂ SnF ₆ _1	305.91	-128.21
Ag ₃₀ Pd ₉ F ₁₀ Ba ₉ Nb ₁₀ O ₃₀ 6	289.49	-116.078	Ag ₃ Pd ₉ F_ErTa ₃ O ₉ _2	306.22	-77.3583
Ag ₂ PdF_ScTaN ₂ _4	290.06	-10.4151	Ag ₂ PdF_ZnMoN ₂ _2	306.98	-76.2225
$Ag_2Pd_{17}F_2_Ce_2Mn_{17}C_2_5$	290.25	-178.987	Ag ₃ Pd ₁₀ F_KLu ₃ F ₁₀ _5	307.02	-86.7424
AgPd ₁₀ F ₃ _KLu ₃ F ₁₀ _2	290.29	-121.782	AgPd ₃ F_FeSnO ₃ _4	307.09	-336.55
AgPd ₄ F_LiAgF ₄ _1	290.55	-71.1739	Ag ₃ Pd ₅ F_Li ₅ GeN ₃ _2	307.13	-202.655
Ag ₃ Pd ₄ F_Li ₃ RuO ₄ _4	290.78	-112.261	Ag ₆ Pd ₇ F_Li ₇ BiO ₆ _2	307.63	-2.33652
Ag ₃ PdF_NbOF ₃ _5	291.05	-90.6089	AgPd ₄ F_InSbO ₄ _2	308.12	-33.3901
Ag ₂ PdF_ScTaN ₂ _6	291.81	-212.573	AgPd ₉ F ₂ _CsU ₂ F ₉ _2	309.24	-203.366
AgPd ₁₀ F ₃ Y ₃ TlF ₁₀ 2	291.84	-172.799	AgPd ₃ F_NbOF ₃ _6	309.35	-127.218
$Ag_{20}Pd_{40}F_3Ba_3Ti_{20}O_{40}6$	293.93	-117.793	AgPd ₃ F ₂ _MgTa ₂ N ₃ _4	309.35	-14
Ag ₉ Pd ₃ F ₂ Ba ₃ Re ₂ O ₉ 4	295.65	-4.95753	AgPd ₃ F_Ti ₃ ZnN_5	309.39	-15.7297
AgPd ₉ F ₃ _ErTa ₃ O ₉ _5	295.70	-45.6385	$Ag_4Pd_{11}F_4Ba_4Fe_4O_{11}2$	309.82	-162.593
AgPd ₄ F_LiAgF ₄ _6	296.58	-4.52607	Ag ₆ Pd ₂₅ F_KTh ₆ F ₂₅ _5	311.20	-140.185
AgPd ₆ F_LiWF ₆ _6	296.76	-120.219	Ag ₂ Pd ₅ F_Sc ₂ TiO ₅ _1	311.56	-52.9845
AgPd ₅ F_HfTlF ₅ _5	296.85	-87.9126	$AgPd_{13}F_3U_3TlF_{13}5$	313.04	-90.9605
$Ag_2Pd_2F_5_Nd_2Pd_2O_5_2$	297.37	-98.9083	Ag ₇ Pd ₂ F_KIn ₂ F ₇ _5	313.24	-90.3729
Ag ₈ Pd ₅ F_Co ₅ SbO ₈ _4	297.82	-137.467	AgPd ₆ F ₂ _Ni(BiO ₃) ₂ _5	314.08	-248.027
$Ag_8Pd_{12}F_3_Al_3(V_3C_2)_4_2$	298.68	-37.3657	$Ag_3Pd_{12}F_4_Lu_4Zr_3O_{12}_6$	314.32	-121.672
Ag ₂ Pd ₆ F_Na ₂ CeF ₆ _5	299.96	-0.75534	Ag ₂ Pd ₆ F_Na ₂ UF ₆ _5	314.49	-110.376
$Ag_7Pd_{12}F_2_Co_7(SbO_6)_2_2$	300.20	-185.045	$Ag_7Pd_2F_2Ba_2Ta_2O_7_3$	315.07	-355.684
Ag ₇ Pd ₃ F_La ₃ SbO ₇ _4	300.51	-45.9946	Ag ₆ Pd ₄ F_Na ₆ ZnO ₄ _5	315.12	-42.6554
Ag ₂ Pd ₄ F_Al ₂ CoO ₄ _5	300.70	-150.737	Ag ₄ PdF_CuTeO ₄ _6	315.63	-26.3495
AgPd ₇ F ₂ _KTm ₂ F ₇ _1	301.13	-27.6994	Ag ₁₅ Pd ₃ F_Zr ₃ InF ₁₅ _2	315.78	-43.1694
$Ag_6Pd_{16}F_5Mg_6Te_5O_{16}5$	301.21	-100.091	$Ag_6Pd_{31}F_7_Zr_6Ag_7F_{31_}6$	316.00	-210.804
$Ag_2Pd_{10}F_Lu(Fe_5Si)_2_2$	301.32	-18.2977	Ag ₃ Pd ₆ F_Na ₃ InF ₆ _2	317.30	-134.613
Ag ₁₀ Pd ₃ F_CsLu ₃ F ₁₀ _6	301.78	-262.162	$Ag_2Pd_{13}F_4_Sm_2Fe_4Co_{13}_3$	318.47	-0.65937
AgPd ₄ F ₂ _Co ₂ SnO ₄ _6	301.95	-26.8573	$Ag_5Pd_{19}F_3_Fe_3Pb_5F_{19}_1$	318.49	-130.086
Ag ₃ Pd ₃ F ₂ _Hf ₃ N ₂ O ₃ _6	302.31	-224.609	$Ag_2Pd_{17}F_3_Tm_2Fe_{17}C_3_4$	318.51	-79.2289

AgPd ₈ F ₅ BaNb ₅ O ₈ 5	320.57	-128.21	AgPd ₅ F_HfGa ₅ Co_5	341.91	-42.5243
AgPd ₄ F_CuTeO ₄ _2	321.51	-77.3583	Ag ₂ Pd ₃ F_Mg ₂ NbN ₃ _4	342.62	-99.4102
AgPd ₆ F_BaIrF ₆ _1	321.57	-76.2225	$Ag_{11}Pd_{18}F_{8}Zn_{11}(B_4Rh_9)_22$	343.19	-9.77037
Ag ₇ Pd ₄ F_Sm ₄ PdO ₇ _6	322.30	-86.7424	Ag ₂ Pd ₆ F_Hf ₂ BIr ₆ _2	343.72	-198.455
AgPd ₂ F ₄ _Cd(GaO ₂) ₂ _2	322.45	-152.668	Ag ₂₅ Pd ₆₀ F ₁₁ _Mg ₁₁ Ti ₂₅ O ₆₀ _4	345.47	-25.3447
Ag2Pd9F_La2AlNi9_5	324.32	-12.2803	Ag ₃ PdF_ThTaN ₃ _2	345.49	-43.4126
Ag ₂ Pd ₄ F_Co ₂ Mo ₄ N_2	324.34	-0.77021	$Ag_{10}Pd_{79}F_{22}K_{10}Gd_{22}F_{79}2$	345.72	-11.6212
Ag ₂ Pd ₉ F_AlV ₉ Au ₂ _2	324.87	-106.466	Ag ₂₅ Pd ₆ F_KTh ₆ F ₂₅ _6	346.45	-202.224
Ag ₁₂ Pd ₆ F_RbMn ₆ O ₁₂ _2	325.35	-202.589	AgPd ₄ F_LiVF ₄ _1	347.17	-208.272
Ag ₄ Pd ₂ F_Ga ₂ CoO ₄ _5	325.50	-19.4307	AgPd ₃ F_LaNi ₃ B_2	347.91	-5.47384
Ag ₂₀ PdF ₃ BiSb ₃ F ₂₀ 6	326.12	-210.796	$Ag_6Pd_{20}F_3Nb_3(Ni_{10}B_3)_2_5$	347.97	-143.93
Ag ₄ Pd ₈ F_CaNb ₄ O ₈ _2	328.38	-22.2775	Ag2PdF6_Ni6Ge2B_1	348.67	-42.258
$Ag_5Pd_8F_2_Sr_5(AuO_4)_2_5$	329.61	-81.0517	Ag ₁₆ Pd ₃₂ F ₃ _Rb ₃ Mn ₁₆ O ₃₂ _4	348.86	-135.539
Ag ₃ Pd ₆ F_Li ₃ NiF ₆ _4	330.45	-186.305	Ag ₈ Pd ₃ F_NaSb ₃ O ₈ _4	355.49	-147.506
Ag ₂ Pd ₃ F_U ₂ Fe ₃ Si_5	330.47	-146.271	Ag ₂ Pd ₄ F_Sr(RhO ₂) ₂ _4	355.50	-37.3217
AgPd ₈ F ₂ BaLu ₂ F ₈ 2	330.50	-41.4909	$Ag_{3}Pd_{10}F_{2}Y_{3}U_{2}O_{10}5$	356.43	-160.073
$AgPd_8F_2BaY_2F_8_2$	331.39	-47.1606	$Ag_3Pd_5F_2Mg_3B_2Rh_5_5$	356.67	-225.034
AgPd ₃ F ₄ SrPt ₃ O ₄ 3	331.55	-173.302	Ag ₃₂ Pd ₃₅ F_FeNi ₃₅ S ₃₂ _3	356.87	-113.304
AgPd ₃ F_TiVO ₃ _3	332.58	-79.3456	AgPd ₃ F ₄ _TlPt ₃ O ₄ _3	357.86	-81.9005
Ag ₃ Pd ₇ F_Sm ₃ MoO ₇ _2	332.63	-36.8341	$AgPd_{11}F_2NdHf_2F_{11}_6$	357.90	-6.99121
AgPd ₆ F_EuZrF ₆ _1	333.21	-98.002	Ag ₃ Pd ₉ F ₂ Ba ₃ Re ₂ O ₉ 2	358.83	-61.0188
Ag ₆ PdF_LiWF ₆ _3	334.33	-12.983	AgPd ₄ F_NdBPt ₄ _4	359.48	-229.023
Ag ₄ PdF_CuTeO ₄ _4	334.36	-54.1943	Ag ₃ Pd ₄ F_Fe ₃ NiP ₄ _6	359.96	-232.559
Ag ₂₄ Pd ₁₁ F ₇ _Li ₇ Ti ₁₁ O ₂₄ _3	334.47	-9.84313	$Ag_4Pd_{51}F_U_4Be_{51}B_3$	360.42	-113.971
$Ag_{15}Pd_{24}F_{4}Ti_{4}(Ni_{5}O_{8})_{3}3$	334.49	-102.744	Ag ₉ Pd ₅ F ₂ Eu ₂ Nb ₅ O ₉ 6	362.48	-146.534
Ag ₆ Pd ₂ F_Hf ₂ BIr ₆ _4	337.41	-80.8681	AgPd ₄ F_SmBiO ₄ _2	362.51	-8.77675
$Ag_2Pd_4F_V_2CoO_4_5$	338.61	-119.239	AgPd ₅ F_LaInNi ₅ _3	364.21	-34.9042
Ag ₁₆ Pd ₈ F_BaTi ₈ O ₁₆ _5	339.63	-12.0574	Ag ₆ PdF_FeNiP ₆ _3	364.24	-74.3268
Ag ₃ PdF_FeSnO ₃ _1	340.39	-53.9318	$Ag_{17}Pd_{20}F_2_Ti_{20}H_2N_{17}_2$	364.30	-231.96
$Ag_8Pd_{21}F_8_Ba_8Mn_8O_{21}_1$	340.92	-68.8382	AgPd ₄ F_NaYF ₄ _5	364.70	-177.225
Ag ₄ Pd ₆ F_Na ₆ ZnO ₄ _6	341.36	-72.9668	AgPd ₉ F ₂ KPu ₂ F ₉ 2	365.71	-79.3631
Ag ₃ Pd ₇ F_Lu ₃ SbO ₇ _2	341.59	-71.67	Ag ₁₅ PdF ₃ Zr ₃ InF ₁₅ 1	365.98	-195.694
Ag ₄ Pd ₇ F_Sm ₄ PdO ₇ _5	341.88	-170.584	Ag ₆ Pd ₂ F_Nb ₂ CdO ₆ _6	366.99	-7.94657

Ag ₂ Pd ₃ F_Na ₂ BiO ₃ _5	367.49	-131.795	AgPdF ₃ _LaAlO ₃ _1	396.26	-66.64
Ag ₁₁ Pd ₄ F_ZnGa ₁₁ Co ₄ _4	368.49	-382.134	Ag ₈ Pd ₁₆ F_BaTi ₈ O ₁₆ _6	396.27	-78.3506
Ag ₆ Pd ₃ F_Li ₃ FeF ₆ _2	369.12	-103.476	Ag ₁₅ Pd ₇ F ₂ Mg ₂ Ti ₇ O ₁₅ 2	396.53	-24.1093
$Ag_{3}Pd_{6}F_{20}Nb_{3}(Ni_{10}B_{3})_{2}1$	370.30	-28.7895	Ag ₂ Pd ₉ F_KPu ₂ F ₉ _5	397.53	-19.9239
AgPd ₆ F_GdYCo ₆ _3	371.45	-3.31639	Ag ₂ Pd ₂ F_Li ₂ HgO ₂ _6	397.61	-12.1282
Ag ₃ Pd ₇ F_Na ₃ CeF ₇ _5	371.82	-181.02	Ag ₆ Pd ₄ F_Li ₆ RuN ₄ _4	398.77	-222.155
$Ag_2Pd_{12}F_5_Lu_5(ReO_6)_2_5$	373.10	-0.52403	Ag ₁₆ Pd ₆ F_BaTa ₆ O ₁₆ _5	402.98	-173.633
Ag ₃₅ Pd ₃₂ F_FeNi ₃₅ S ₃₂ _1	373.37	-170.467	AgPd ₄ F_TbGaNi ₄ _6	408.11	-191.984
AgPd ₇ F ₂ _KIn ₂ F ₇ _1	373.57	-144.34	Ag ₄ PdF ₂ Co ₂ SnO ₄ 5	408.13	-12.8912
Ag ₂ PdF ₁₂ BaAs ₂ F ₁₂ 4	374.47	-162.083	AgPd ₂ F_LiFeO ₂ _4	410.29	-54.109
$Ag_8Pd_{21}F_2_Ce_8U_2O_{21}_2$	374.57	-2.51586	Ag ₃ Pd ₂ F_LiTi ₂ N ₃ _3	411.91	-117.992
AgPd ₄ F_TbGaCo ₄ _4	374.68	-176.863	Ag ₅ Pd ₆ F_Li ₅ IO ₆ _6	414.58	-1.99746
$Ag_2Pd_{21}F_6Cr_{21}(WC_3)_25$	376.09	-76.3873	AgPd ₆ F_CrMoF ₆ _6	414.90	-185.66
Ag ₂ Pd ₃ F_Li ₂ HfO ₃ _6	379.26	-165.807	$Ag_8Pd_3F_2Mn_3Zn_2O_8_5$	415.66	-171.917
AgPd ₃ F ₂ Nb ₃ AlC ₂ 3	380.07	-53.3995	$Ag_2Pd_9F_5_Eu_2Nb_5O_9_2$	417.71	-165.81
$Ag_4Pd_{12}F_3_Lu_4Zr_3O_{12}_1$	380.81	-307.37	Ag ₂ Pd ₆ F_Lu ₂ TeO ₆ _2	418.15	-109.885
$Ag_6PdF_CuPdF_6_5$	382.12	-9.53014	$Ag_3Pd_2F_MgTa_2N_3_1$	422.05	-192.883
$AgPd_2F_ZrTi_2O_4$	384.13	-51.7708	$AgPd_{51}F_4U_4Be_{51}B_4$	422.82	-280.243
$Ag_{12}Pd_4F_3_Mn_{12}Ge_4N_3_6$	384.15	-234.711	AgPd ₂ F ₂ _K(FeS) ₂ _1	423.20	-364.093
$Ag_3Pd_6F_2Ce_3(TaN_3)_22$	386.54	-81.4639	$Ag_{12}PdF_4_Np(FeP_3)_4_3$	423.33	-9.46922
$Ag_{20}Pd_{17}F_{2}_{}Ti_{20}H_{2}N_{17}_{}4$	386.61	-55.184	Ag ₆ PdF_UAgF ₆ _6	424.09	-254.421
AgPd ₃ F_ThTaN ₃ _4	387.39	-38	$Ag_2Pd_4F_Ga_2FeO_4_4$	424.42	-147.025
$Ag_{30}Pd_{13}F_5Mg_5Ti_{13}O_{30}2$	387.72	-341.107	AgPd ₂ F_SrCuO ₂ _5	425.25	-161.422
$AgPd_2F_ZnMoN_2_3$	388.68	-82.5641	$Ag_2Pd_3F_LiTi_2N_3_1$	426.85	-78.7428
AgPd ₅ F_BaYF ₅ _2	391.16	-29.7264	Ag ₄ Pd ₆ F_Ca ₄ PtO ₆ _2	429.22	-159.264
AgPd ₃ F_FeSnO ₃ _3	391.72	-6.96541	Ag ₃ Pd ₃ F_Na ₃ AuO ₃ _5	429.73	-83.8889
AgPd ₁₀ F_LaCeNi ₁₀ _5	392.46	-272.918	Ag ₃ Pd ₂ F_Na ₃ CuO ₂ _5	430.37	-349.262
Ag ₂ PdF_Ti ₂ CN_6	392.56	-21.787	AgPd ₂ F_GaCuO ₂ _6	431.60	-148.926
Ag ₄ Pd ₂₇ F ₂ Al ₂₇ (FeNi ₂) ₂ 1	393.71	-19.65	AgPd ₄ F_MgTeO ₄ _5	432.22	-61.5227
Ag ₂ Pd ₃ F_Li ₂ PtO ₃ _6	394.37	-179.93	$Ag_3Pd_{11}F_3_Bi_3Ir_3O_{11}_2$	433.24	-105.807
Ag ₇ Pd ₃ F_Ho ₃ SbO ₇ _6	394.66	-216.632	$Ag_3Pd_2F_TaZn_2N_3_1$	433.28	-212.914
$Ag_{30}Pd_{104}F_{11}Ta_{11}(Co_{52}B_{15})_{2}4$	394.78	-75.6191	$AgPd_{15}F_3_Zr_3InF_{15}_3$	434.89	-136.492
$Ag_{32}Pd_{19}F_5_Zn_5Co_{19}O_{32}_4$	395.84	-60.6951	AgPd ₃ F_CdPbO ₃ _2	436.48	-248.49

Ag ₄ PdF_LiAgF ₄ _5	436.85	-32.3624	$Ag_6Pd_2F_Li_2SnF_6_5$	514.16	-170.225
Ag ₂ Pd ₂ F_Li ₂ HgO ₂ _5	437.25	-73.77	Ag ₃ Pd ₄ F_Ti ₄ CN ₃ _2	514.97	-170.494
Ag ₆ Pd ₃ F_Ni(PtO ₂) ₃ _4	438.17	-57.6434	AgPd ₃ F_GdInO ₃ _2	522.27	-135.238
Ag ₈ PdF_NiP ₈ W_2	440.52	-119.852	Ag ₂ Pd ₃ F_Li ₂ TcO ₃ _6	523.93	-188.016
AgPd ₆ F ₂ Ta ₂ CdO ₆ 2	440.84	-264.266	AgPd ₂ F_LiMoN ₂ _4	532.99	-266.019
Ag ₄ Pd ₇ F_Li ₇ SbN ₄ _2	440.87	-1.53978	AgPd ₂ F_LiMoN ₂ _3	538.63	-120.07
Ag ₅ Pd ₈ F_BaNb ₅ O ₈ _2	441.70	-188.04	Ag ₃ Pd ₁₂ F ₅ _Lu ₃ Sb ₅ O ₁₂ _2	565.70	-76.7728
AgPd ₁₀ F ₃ _GaNi ₁₀ P ₃ _6	442.77	-19.6493	AgPd ₆ F_FeNiP ₆ _1	573.05	-45.4478
$Ag_5Pd_{12}F_3_Lu_3Sb_5O_{12}_5$	444.85	-197.844	Ag ₃ Pd ₄ F_Na ₃ UO ₄ _5	576.74	-21.8024
Ag ₇ Pd ₁₉ F_CeTa ₇ O ₁₉ _5	444.89	-101.35	Ag ₄ Pd ₆ F_Li ₆ RuN ₄ _2	580.01	-169.867
AgPd ₃ F_CeCoSi ₃ _1	445.11	-170.225	AgPd ₂ F_Mo ₂ CN_5	584.86	-169.502
Ag ₅ Pd ₉ F ₄ In ₅ B ₄ Ir ₉ 5	445.57	-170.494	Ag ₄ Pd ₂ F_Mn ₂ SnO ₄ _5	586.10	-31.0111
AgPd ₄ F_TmAlNi ₄ _4	446.40	-135.238	Ag ₇ Pd ₃ F_Ta ₃ O ₇ F_4	588.82	-36.1462
Ag ₆ Pd ₅ F_Li ₅ OsO ₆ _5	447.96	-188.016	AgPd ₃ F_CuAgF ₃ _5	590.08	-87.784
$Ag_2Pd_5F_2_K_2Rh_2O_5_1$	449.61	-162.501	Ag ₃ PdF_AcTiO ₃ _1	602.63	-22.8747
AgPdF2_CrAuO2_2	452.55	-19.4525	Ag ₃ Pd ₈ F_Na ₃ UF ₈ _5	610.73	-209.054
AgPdF2_GaAgO2_5	452.55	-78.7462	AgPd ₈ F_NiP ₈ W_4	617.86	-51.7456
Ag ₃ Pd ₃ F_Na ₃ AuO ₃ _6	455.56	-11.2126	Ag ₈ Pd ₅ F_Co ₅ NiS ₈ _3	624.94	-30.6302
AgPd ₄ F_TbCuNi ₄ _6	473.46	-33.1727	AgPd ₄ F ₃ _Ti ₄ CN ₃ _5	625.29	-61.5528
$Ag_2Pd_4F_3_Cu_2B_3Ir_4_2$	474.22	-103.974	Ag ₄ Pd ₂ F_Li(NiO ₂) ₂ _1	634.63	-199.79
AgPd ₁₂ F ₅ _LaSb ₅ O ₁₂ _2	482.08	-231.77	Ag ₂ Pd ₃ F_Li ₂ RhO ₃ _6	635.41	-258.617
$Ag_4Pd_{12}F_3_Mn_{12}Ge_4N_3_5$	485.80	-61.22	AgPd ₃ F_PuTlO ₃ _5	649.39	-39.8305
AgPd ₂ F_ScTaN ₂ _2	486.08	-134.289	AgPd ₃ F_Mn ₃ SnH_2	659.58	-286.947
Ag ₇ Pd ₄ F_Li ₇ SbN ₄ _4	487.47	-321.384	AgPdF ₃ _CaH ₃ Pd_1	661.64	-28.4374
$Ag_2Pd_6F_9_Ho_2(B_2Rh_3)_3_3$	494.12	-29.1278	Ag ₃ Pd ₆ F_Ni(PtO ₂) ₃ _2	674.15	-108.766
Ag ₆ PdF ₂ _Li ₂ SnF ₆ _3	494.93	-255.485	AgPd ₄ F_NaErF ₄ _2	676.76	-25.2155
Ag ₃ PdF_CuAgF ₃ _6	495.53	-234.883	Ag ₄ PdF_SbRhO ₄ _1	677.50	-49.6729
Ag ₄ PdF_CoRhS ₄ _5	495.82	-264.266	$AgPd_{12}F_4_Np(FeP_3)_4_1$	679.00	-218.173
Ag ₃ Pd ₂ F_Li ₂ TcO ₃ _5	496.17	-1.53978	AgPd ₄ F_CoSi ₄ Ni_1	683.86	-19.098
AgPd ₂ F_ScTaN ₂ _5	498.52	-188.04	AgPd ₄ F_GdYH ₄ _1	688.40	-266.019
Ag ₄ PdF_LiVF ₄ _3	505.65	-19.6493	Ag ₄ PdF_CrMoO ₄ _1	699.87	-120.07
Ag ₁₁ Pd ₂ F_NdHf ₂ F ₁₁ _3	507.63	-197.844	$Ag_{12}Pd_4F_Np(FeP_3)_4_5$	702.33	-76.7728
AgPd ₆ F ₂ _Li ₂ SnF ₆ _1	509.73	-101.35	AgPd ₃ F_Al ₃ BC_6	725.52	-45.4478

Ag ₆ Pd ₃ F_NaTl ₃ F ₆ _4	727.28	-21.8024	Ag ₃ Pd ₇ F_Ta ₃ O ₇ F_2	775.75	-17.0943
$Ag_2Pd_4F_Ca(AgO_2)_2_5$	728.19	-169.867	Ag ₃ Pd ₄ F_Mg ₃ NiO ₄ _2	818.59	-88.5688
$Ag_2Pd_7F_2_Tb_2Pt_2O_7_6$	733.97	-169.502	$Ag_4Pd_{12}F_Np(FeP_3)_4_6$	841.88	-150.9
Ag ₄ Pd ₃ F_Mg ₃ NiO ₄ _4	744.94	-31.0111	AgPd ₄ F_SbRhO ₄ _3	853.23	-76.3499
Ag ₅ Pd ₈ F_Co ₅ NiS ₈ _1	765.84	-59.1424	AgPd ₄ F_NbMoO ₄ _2	1039.53	-59.1424

Table S4 The CGCNN-2 model predicted 259 potentially stable Ag-Pd-F structures with 149 distinct Ag-Pd-F compositions, including potential stable structures, E_d values from CGCNN-2 model and E_d by DFT. The final number (i.e., _3) represent different atomic arrangement of the same substitution template (i.e., BiSb₃F₂₀) after substituting Ag,

Composition	DFT- ^E d (meV/atom)	CGCNN- ^E d (meV/atom)	Composition	DFT- ^E d (meV/atom)	CGCNN- ^E d (meV/atom)
$AgPd_{3}F_{20}BiSb_{3}F_{20}3$	-22.56	-17.4587	AgPd ₃ F ₈ _LiCr ₃ O ₈ _6	42.49	-6.17843
Ag ₂ PdF ₆ La ₂ WO ₆ 2	-20.42	-52.3521	Ag ₃ Pd ₁₀ F ₃₀ Na ₃ (WO ₃) ₁₀ 5	42.72	-15.9661
$Ag_2PdF_6_Na_2PdF_6_3$	-19.78	-19.5577	$AgPd_{11}F_{33}_La(WO_3)_{11}_2$	43.08	-40.8212
$Ag_2PdF_6_Ni(IO_3)_2_1$	-17.44	-21.1692	$Ag_{5}Pd_{2}F_{12}Y_{5}U_{2}O_{12}3$	43.18	-13.858
$AgPd_2F_{12}CaCr_2F_{12}2$	-8.53	-32.2214	$Ag_2PdF_6_Pr_2WO_6_5$	45.32	-3.76616
$Ag_3PdF_{20}BiSb_3F_{20}1$	-2.40	-22.7538	AgPd ₇ F ₁₉ _PrTa ₇ O ₁₉ _3	46.29	-29.1942
Ag ₂ PdF ₆ Tm ₂ WO ₆ 5	19.62	-34.7308	AgPdF ₃ _LuGaO ₃ _2	46.84	-23.734
Ag ₄ PdF ₁₀ _ZrU ₄ O ₁₀ _2	23.36	-7.31805	Ag ₆ PdF ₁₂ _Lu ₆ WO ₁₂ _2	47.40	-53.7476
$Ag_4Pd_3F_{12}Lu_4Zr_3O_{12}_2$	24.74	-41.0401	$Ag_2PdF_6_LiCu_2F_6_2$	47.93	-105.261
$Ag_2Pd_2F_7_Tm_2Ti_2O_7_6$	26.77	-3.04654	$AgPd_9F_{27}Na(WO_3)_9_5$	48.46	-39.3182
Ag ₃ PdF ₇ _Er ₃ TaO ₇ _3	27.43	-35.0639	AgPd ₃ F ₈ NaSb ₃ O ₈ 3	48.83	-21.6067
AgPdF5_VAsO5_6	28.22	-87.0575	Ag ₁₃ Pd ₅ F ₃₀ _Mg ₅ Ti ₁₃ O ₃₀ _6	49.59	-37.5051
$Ag_4Pd_3F_{12}Lu_4Hf_3O_{12}_3$	28.75	-47.0014	AgPdF5_ZnCuF5_1	50.02	-77.3714
Ag ₃ PdF ₇ Sm ₃ MoO ₇ 1	29.86	-20.2709	AgPdF ₄ _LiAgF ₄ _4	51.67	-60.4226
AgPdF7_YPtF7_3	31.82	-15.4491	AgPdF ₄ _LiAgF ₄ _2	51.71	-67.6207
Ag ₃ PdF ₈ NaSb ₃ O ₈ 1	33.79	-58.0066	$Ag_2Pd_4F_{13}Na_2W_4O_{13}5$	51.75	-0.18872
$Ag_3Pd_2F_{12}Cr_3(FeO_6)_2_6$	33.98	-90.429	Ag ₃ PdF ₈ _TaSb ₃ O ₈ _3	52.11	-40.6428
AgPdF ₄ _MgTeO ₄ _3	34.20	-79.5933	AgPdF5_MgCuF5_3	52.67	-82.3253
AgPdF4_InSbO4_3	35.78	-41.331	$Ag_{3}PdF_{8}Ho_{3}ReO_{8}3$	53.15	-21.7238
AgPdF4_InSbO4_1	36.03	-40.3551	$AgPd_2F_8_Co(ReO_4)_2_1$	53.89	-3.29515
AgPd ₃ F ₉ _HoTa ₃ O ₉ _3	36.27	-104.826	$Ag_2PdF_6_Sb_2WO_6_5$	54.72	-11.9711
Ag ₂ PdF ₅ Na ₂ VF ₅ 3	36.97	-28.1482	AgPdF ₄ _CuTeO ₄ _1	57.18	-23.186
AgPdF4_NbGaO4_2	37.22	-44.9046	$Ag_6Pd_8F_{25}Ta_8Pb_6O_{25}1$	58.84	-1.06352
$Ag_{3}Pd_{2}F_{12}Ga_{2}(MoO_{4})_{3}5$	38.33	-76.9203	$Ag_7Pd_2F_{15}Mg_2Ti_7O_{15}6$	64.51	-41.0523
Ag ₂ PdF ₅ _Ti ₂ CoO ₅ _4	39.27	-33.5468	AgPdF ₄ _LiVF ₄ _2	66.40	-64.014
$Ag_{25}Pd_{11}F_{60}Mg_{11}Ti_{25}O_{60}6$	39.46	-42.6671	AgPd ₂ F ₆ Ta ₂ CdO ₆ 1	67.36	-3.62654
AgPdF ₃ _YMoN ₃ _4	41.61	-25.1368	$AgPd_6F_{18}_Tl(WO_3)_{6}_5$	67.74	-10.5765
Ag ₃ PdF ₇ _Lu ₃ SbO ₇ _1	42.02	-34.3844	AgPdF ₆ _CuPdF ₆ _4	73.59	-105.794

Pd, and F atoms.

Ag ₂ Pd ₂ F ₇ Y ₂ Fe ₂ O ₇ 1 Ag ₅ Pd ₂ F ₁₂ Lu ₅ (ReO ₆) ₂ 1 Ag ₃ PdF ₉ Tm(IO ₃) ₃ 1	73.95 74.64 75.35	-47.2514 -60.956	Ag ₅ Pd ₃ F ₁₃ _Pr ₅ Ge ₃ O ₁₃ _3 AgPdF ₅ _ZnCuF ₅ _3	98.72 99.55	-3.59357
Ag ₅ Pd ₂ F ₁₂ _Lu ₅ (ReO ₆) ₂ _1 Ag ₃ PdF ₉ _Tm(IO ₃) ₃ _1	74.64 75.35	-60.956	AgPdF ₅ _ZnCuF ₅ _3	99.55	-60 5380
Ag ₃ PdF ₉ _Tm(IO ₃) ₃ _1	75.35		1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-00.3309
		-29.415	AgPdF ₆ _LiWF ₆ _4	99.98	-41.6532
$Ag_2Pd_2F_7_Tm_2Ti_2O_7_5$	76.21	-42.6644	$Ag_4Pd_4F_{13}Ru_4Pb_4O_{13}1$	100.99	-23.4868
AgPd ₁₂ F ₃₃ _Ta ₁₂ MoO ₃₃ _3	76.42	-9.19462	Ag ₆ PdF ₁₂ _KMn ₆ O ₁₂ _4	101.53	-87.4634
AgPd ₄ F ₈ NaTa ₄ O ₈ 3	76.50	-97.214	Ag ₁₃ PdF ₃₃ NaNb ₁₃ O ₃₃ 1	102.44	-46.7701
$Ag_3Pd_2F_{12}Nd_2(MoO_4)_3_5$	78.78	-13.8397	AgPd ₉ F ₄ _H ₉ BrO ₄ _1	102.52	-166.138
AgPd ₂ F ₆ _Mn ₂ TeO ₆ _5	80.01	-42.7866	AgPdF ₆ _ZrNiF ₆ _6	102.74	-63.5626
Ag ₃ PdF ₁₂ _Cu ₃ SbF ₁₂ _1	81.41	-127.332	Ag ₃ Pd ₃ F ₁₁ Bi ₃ Ir ₃ O ₁₁ 1	102.92	-5.96195
AgPdF ₄ _LiCuF ₄ _2	82.17	-69.1169	Ag ₃ Pd ₁₆ F ₃₂ Sr ₃ (RhO ₂) ₁₆ 5	103.22	-24.9151
AgPdF ₆ _CrNiF ₆ _5	82.29	-138.389	AgPd ₁₄ F_NaAlB ₁₄ _6	104.15	-93.9865
AgPdF ₆ NaVF ₆ 3	83.18	-1.64385	Ag ₂₁ Pd ₃₂ F ₃ Co ₂₁ Cu ₃ O ₃₂ 2	105.88	-102.837
$Ag_3Pd_3F_{10}_Tl_3Os_3O_{10}_3$	83.53	-8.03935	AgPdF4_NbGaO4_4	106.40	-76.2894
Ag ₃ PdF ₆ Na ₃ TiF ₆ 2	83.67	-23.4447	Ag ₈ PdF ₁₆ BaTi ₈ O ₁₆ 4	107.16	-20.0649
Ag ₂ PdF ₆ Nb ₂ CdO ₆ 3	84.08	-32.8894	AgPdF ₄ _AlSbO ₄ _1	107.16	-8.83626
AgPd ₈ F ₁₆ BaTi ₈ O ₁₆ 2	85.26	-35.6304	AgPdF5_TaAsO5_4	107.92	-123.167
Ag ₃ PdF ₆ _Li ₃ NiF ₆ _6	87.85	-49.9314	Ag ₂ PdF ₇ _TiV ₂ O ₇ _5	108.10	-3.16804
AgPdF ₄ _MgTeO ₄ _1	88.03	-118.646	AgPd ₂ F ₅ _TmMn ₂ O ₅ _5	108.83	-58.8493
$Ag_4Pd_2F_9_Ca_4Ta_2O_9_2$	88.32	-4.63566	Ag ₃ PdF ₈ _Cr ₃ AgO ₈ _6	108.84	-29.8364
$Ag_2Pd_3F_{12}Nd_2(MoO_4)_3_6$	88.91	-35.3713	$Ag_{10}Pd_{16}F_Sr(H_8O_5)_2_4$	111.06	-85.3424
AgPd ₂ F ₆ _Li ₂ SnF ₆ _2	89.65	-49.1451	Ag ₈ PdF ₁₆ BaMn ₈ O ₁₆ 4	111.52	-74.4112
Ag ₅ Pd ₁₃ F ₃₀ Mg ₅ Ti ₁₃ O ₃₀ 5	90.14	-6.77787	$Ag_2PdF_4_MgV_2O_4_3$	111.94	-1.34123
AgPd ₉ F ₂₅ Nb ₉ VO ₂₅ 3	90.23	-15.0086	$Ag_{20}Pd_{3}F_{40}Ba_{3}Ti_{20}O_{40}4$	114.29	-61.3416
$Ag_2Pd_4F_9Mg_4Sb_2O_9_1$	90.35	-50.793	Ag ₁₆ Pd ₃ F ₃₂ Rb ₃ Mn ₁₆ O ₃₂ 6	115.21	-60.242
$Ag_2Pd_4F_{15}Dy_2Mo_4O_{15}1$	90.72	-4.00677	Ag ₈ PdF ₁₆ NaMn ₈ O ₁₆ 6	116.40	-166.526
Ag ₃ PdF ₆ Ca ₃ WO ₆ 2	90.91	-28.4269	AgPdF ₄ _AsRhO ₄ _2	116.41	-114.19
AgPdF7_LuPtF7_3	91.99	-15.2797	$AgPd_{3}F_{8}V_{3}AgO_{8}1$	116.69	-78.0871
Ag ₂ PdF ₅ Sc ₂ TiO ₅ 2	92.38	-16.9269	Ag ₇ PdF ₁₉ _PrTa ₇ O ₁₉ _1	118.48	-107.961
AgPd ₃ F ₁₂ Cu ₃ SbF ₁₂ _3	93.98	-90.5589	Ag ₅ PdF ₈ _LiAl ₅ O ₈ _2	119.35	-33.1363
Ag ₃ PdF ₆ Pr ₃ GaO ₆ 5	94.33	-15.9133	AgPdF ₃ _TmRhO ₃ _5	120.95	-10.9727
$Ag_2Pd_3F_{12}Ga_2(MoO_4)_3_6$	95.52	-33.3508	Ag ₃₂ PdF ₃₅ FeNi ₃₅ S ₃₂ 5	121.09	-1846
$Ag_3Pd_9F_{20}Mg_3Ti_9O_{20}5$	97.36	-2.49028	Ag ₂ PdF ₆ _Li ₂ SnF ₆ _4	121.15	-24.4608

$Ag_4Pd_2F_{15}_Tm_2Mo_4O_{15}_1$	97.57	-33.0741	AgPdF ₄ _ZnCrO ₄ _4	121.91	-16.475

Ag ₁₂ PdF ₃₃ _Ta ₁₂ MoO ₃₃ _1	123.50	-86.2497	Ag ₄ Pd ₉ F_H ₉ BrO ₄ _6	161.09	-45.0651
$Ag_4Pd_2F_9_Mg_4Sb_2O_9_3$	124.70	-91.9513	Ag ₇ PdF ₁₀ BaGe ₇ N ₁₀ 6	161.15	-51.2542
Ag ₁₂ Pd ₁₉ F_EuAl ₁₂ O ₁₉ _5	125.09	-15.9733	Ag ₂ Pd ₂ F ₇ Sm ₂ Ge ₂ O ₇ 1	161.19	-8.35988
AgPdF4_AgRuO4_1	129.21	-203.723	Ag ₁₆ Pd ₃ F ₃₂ _Sr ₃ (RhO ₂) ₁₆ _6	162.29	-27.1732
Ag ₂ PdF ₅ _Ce ₂ TiO ₅ _2	129.57	-40.0768	$Ag_{19}Pd_{32}F_5_Zn_5Co_{19}O_{32}_2$	163.29	-32.0945
$Ag_2Pd_{28}F_Mg(AlB_{14})_2_3$	129.85	-11.5515	AgPdF ₅ _VAsO ₅ _5	164.46	-58.4425
$AgPd_2F_4MgV_2O_4_1$	131.21	-58.4425	Ag ₃ PdF ₇ Ta ₃ O ₇ F_1	164.96	-22.5587
$Ag_3Pd_2F_8Ca_3(AsO_4)_22$	132.42	-30.3693	Ag ₄ PdF ₇ _BaGa ₄ O ₇ _4	165.17	-27.0694
AgPd ₃ F ₆ _Li ₃ FeF ₆ _5	132.47	-3.01931	Ag ₉ PdF ₂₇ Na(WO ₃) ₉ 6	165.50	-42.425
$Ag_9PdF_{25}_Nb_9VO_{25}_1$	132.61	-40.0807	Ag ₄ PdF ₈ NaTa ₄ O ₈ 1	166.25	-30.2707
Ag ₆ PdF ₁₂ _RbMn ₆ O ₁₂ _6	132.75	-64.2628	Ag ₂ Pd ₁₃ F_LiB ₁₃ C ₂ _1	168.95	-1.70281
Ag5PdF8_Co5SbO8_1	133.27	-132.594	Ag ₂ PdF ₄ Fe ₂ NiO ₄ 3	169.67	-31.401
Ag ₆ Pd ₂ F_Ni ₆ Ge ₂ B_4	135.42	-114.802	Ag ₃ PdF ₆ _Li ₃ FeF ₆ _6	172.48	-6.21313
$Ag_{12}Pd_3F_Nb(GaNi_4)_3_5$	136.33	-35.0695	$Ag_4Pd_{12}F_Mn_{12}Pt_4N_5$	176.86	-12.0088
Ag_3PdF_{12} Er(ReO ₄) ₃ 1	136.51	-73.4033	AgPdF5_MgCuF5_1	177.30	-18.038
$Ag_2Pd_3F_6Na_2Nb_3O_6_3$	138.85	-5.47458	$Ag_{13}Pd_2F_LiB_{13}C_2_3$	179.66	-46.4161
Ag ₅ PdF ₁₃ _KSb ₅ O ₁₃ _3	139.86	-126.092	AgPd ₃ F ₇ Ta ₃ O ₇ F_3	182.31	-58.2003
$AgPd_{3}F_{8}Cr_{3}AgO_{8}5$	140.30	-2.26215	Ag ₃₅ PdF ₃₂ FeNi ₃₅ S ₃₂ 2	183.17	-66.223
$Ag_{9}Pd_{3}F_{20}Mg_{3}Ti_{9}O_{20}6$	143.40	-26.9374	Ag ₁₁ Pd ₁₇ F_KAl ₁₁ O ₁₇ _5	183.58	-10.6893
Ag ₁₁ PdF ₃₃ _La(WO ₃) ₁₁ _4	143.42	-171.101	$Ag_{11}Pd_{25}F_{60}Mg_{11}Ti_{25}O_{60}5$	187.32	-9.21874
Ag ₁₁ PdF ₁₇ _Al ₁₁ TlO ₁₇ _1	143.97	-40.8828	Ag ₄ PdF ₈ _RbMn ₄ O ₈ _6	191.12	-15.3271
$Ag_8PdF_{16}KMn_8O_{16}4$	145.43	-0.71893	Ag ₈ PdF ₅ BaNb ₅ O ₈ 6	192.58	-17.6489
$Ag_4Pd_2F_3_Cu_2B_3Ir_4_4$	145.83	-50.1547	Ag ₆ PdF ₈ _In(Cu ₃ O ₄) ₂ _1	192.59	-79.5199
AgPdF5_TaAsO5_2	146.31	-53.6564	AgPd ₂ F ₄ _Lu(CuO ₂) ₂ _3	192.99	-5.64997
$Ag_7Pd_2F_{12}_Co_7(SbO_6)_2_1$	149.00	-18.8944	Ag ₁₇ Pd ₃ F ₄₇ _Sm ₃ Ta ₁₇ O ₄₇ _4	193.75	-37.3272
$Ag_{3}PdF_{8}LiCr_{3}O_{8}_{5}$	151.29	-6.5205	Ag ₄ PdF ₈ Nd ₄ GeO ₈ 4	195.49	-22.7998
$Ag_2PdF_4_Cd_2PbO_4_1$	152.59	-84.4417	$Ag_{3}PdF_{8}V_{3}AgO_{8}3$	197.82	-1.91845
$Ag_{12}Pd_4F_Mn_{12}Pt_4N_6$	152.79	-14.9074	$Ag_4PdF_{12}K(WO_3)_4_4$	198.74	-16.6504
AgPdF ₃ _TiVO ₃ _5	153.12	-23.7761	Ag ₂₇ Pd ₇ F ₉ Na ₇ (WO ₃) ₉ 1	199.36	-1.98617
Ag ₇ PdF ₁₂ _Mn ₇ GeO ₁₂ _4	153.17	-56.2466	$Ag_2Pd_{14}F_Y_2Fe_{14}C_5$	200.23	-27.6333
$Ag_8Pd_{16}F_NaMn_8O_{16}_4$	153.67	-37.352	$Ag_2Pd_2F_{11}_Ta_2Mo_2O_{11}_3$	201.92	-14.4389

$AgPd_2F_8_CaCu_2F_8_3$	158.14	-111.156	Ag ₂ PdF ₄ _Lu(CuO ₂) ₂ _1	202.40	-44.1645
$AgPdF_3_Al_3BC_4$	158.83	-119.357	$Ag_3Pd_8F_{12}Al_3(V_3C_2)_4_3$	204.82	-102.26

$Ag_{19}Pd_5F_{32}Zn_5Co_{19}O_{32}1$	204.93	-4.7357	$Ag_2Pd_2F_7_Sm_2Ge_2O_7_1$	161.19	-17.0516
$AgPd_2F_4_SrNb_2O_4_3$	205.03	-17.5201	Ag ₁₆ Pd ₃ F ₃₂ Sr ₃ (RhO ₂) ₁₆ 6	162.29	-3.82591
$Ag_6PdF_BaIrF_6_3$	209.12	-2.91891	$Ag_{19}Pd_{32}F_5_Zn_5Co_{19}O_{32}_2$	163.29	-37.2218
Ag ₁₇ Pd ₁₁ F_KAl ₁₁ O ₁₇ _6	209.27	-14.4557	AgPdF5_VAsO5_5	164.46	-168.525
$AgPd_2F_4_MgV_2O_4_1$	131.21	-17.8073	Ag ₃ PdF ₇ Ta ₃ O ₇ F_1	164.96	-234.582
$Ag_3Pd_2F_8Ca_3(AsO_4)_22$	132.42	-22.5587	Ag ₄ PdF ₇ _BaGa ₄ O ₇ _4	165.17	-16.3051
AgPd ₃ F ₆ _Li ₃ FeF ₆ _5	132.47	-2.16032	Ag ₉ PdF ₂₇ _Na(WO ₃) ₉ _6	165.50	-68.7977
$Ag_9PdF_{25}_Nb_9VO_{25}_1$	132.61	-0.45285	Ag ₄ PdF ₈ NaTa ₄ O ₈ 1	166.25	-49.0265
Ag ₆ PdF ₁₂ _RbMn ₆ O ₁₂ _6	132.75	-7.56481	$Ag_2Pd_{13}F_LiB_{13}C_2_1$	168.95	-135.534
$Ag_5PdF_8_Co_5SbO_8_1$	133.27	-56.3789	Ag ₂ PdF ₄ _Fe ₂ NiO ₄ _3	169.67	-3.59357
Ag ₆ Pd ₂ F_Ni ₆ Ge ₂ B_4	135.42	-2.00282	Ag ₃ PdF ₆ _Li ₃ FeF ₆ _6	172.48	-60.5389
$Ag_{12}Pd_3F_Nb(GaNi_4)_3_5$	136.33	-28.177	$Ag_4Pd_{12}F_Mn_{12}Pt_4N_5$	176.86	-41.6532
Ag_3PdF_{12} Er(ReO ₄) ₃ 1	136.51	-0.93376	AgPdF5_MgCuF5_1	177.30	-23.4868
$Ag_2Pd_3F_6_Na_2Nb_3O_6_3$	138.85	-32.6544	$Ag_{13}Pd_2F_LiB_{13}C_2_3$	179.66	-87.4634
$Ag_5PdF_{13}_KSb_5O_{13}_3$	139.86	-28.622	AgPd ₃ F ₇ Ta ₃ O ₇ F_3	182.31	-46.7701
$AgPd_{3}F_{8}_Cr_{3}AgO_{8}_5$	140.30	-134.084	Ag ₃₅ PdF ₃₂ FeNi ₃₅ S ₃₂ 2	183.17	-166.138
$Ag_{9}Pd_{3}F_{20}Mg_{3}Ti_{9}O_{20}6$	143.40	-19.7906	Ag ₁₁ Pd ₁₇ F_KAl ₁₁ O ₁₇ _5	183.58	-63.5626
$Ag_{11}PdF_{33}_La(WO_3)_{11}_4$	143.42	-5.63189	$Ag_{11}Pd_{25}F_{60}Mg_{11}Ti_{25}O_{60}5$	187.32	-5.96195
$Ag_{11}PdF_{17}Al_{11}TlO_{17}l$	143.97	-29.0225	$Ag_4PdF_8_RbMn_4O_8_6$	191.12	-24.9151
$Ag_8PdF_{16}_KMn_8O_{16}_4$	145.43	-0.46481	$Ag_8PdF_5_BaNb_5O_8_6$	192.58	-93.9865
$Ag_4Pd_2F_3_Cu_2B_3Ir_4_4$	145.83	-52.4847	Ag ₆ PdF ₈ _In(Cu ₃ O ₄) ₂ _1	192.59	-102.837
AgPdF5_TaAsO5_2	146.31	-7.47947	$AgPd_{2}F_{4}Lu(CuO_{2})_{2}_{3}$	192.99	-76.2894
$Ag_7Pd_2F_{12}_Co_7(SbO_6)_2_1$	149.00	-38.2336	$Ag_{17}Pd_{3}F_{47}Sm_{3}Ta_{17}O_{47}4$	193.75	-20.0649
$Ag_{3}PdF_{8}LiCr_{3}O_{8}5$	151.29	-3.372	$Ag_4PdF_8_Nd_4GeO_8_4$	195.49	-8.83626
$Ag_2PdF_4_Cd_2PbO_4_1$	152.59	-18.2205	$Ag_{3}PdF_{8}V_{3}AgO_{8}3$	197.82	-123.167
$Ag_{12}Pd_4F_Mn_{12}Pt_4N_6$	152.79	-279.809	$Ag_4PdF_{12}K(WO_3)_4_4$	198.74	-3.16804
AgPdF ₃ _TiVO ₃ _5	153.12	-43.9928	Ag ₂₇ Pd ₇ F ₉ Na ₇ (WO ₃) ₉ 1	199.36	-58.8493
Ag ₇ PdF ₁₂ _Mn ₇ GeO ₁₂ _4	153.17	-95.0113	$Ag_2Pd_{14}F_Y_2Fe_{14}C_5$	200.23	-29.8364
Ag ₈ Pd ₁₆ F_NaMn ₈ O ₁₆ _4	153.67	-4.86381	$Ag_2Pd_2F_{11}_Ta_2Mo_2O_{11}_3$	201.92	-85.3424
$AgPd_2F_8_CaCu_2F_8_3$	158.14	-0.95292	$Ag_2PdF_4_Lu(CuO_2)_2_1$	202.40	-74.4112

AgPdF ₃ _Al ₃ BC_4	158.83	-18.5255	$Ag_3Pd_8F_{12}Al_3(V_3C_2)_4_3$	204.82	-1.34123
Ag ₄ Pd ₉ F_H ₉ BrO ₄ _6	161.09	-34.7279	$Ag_{19}Pd_5F_{32}Zn_5Co_{19}O_{32}1$	204.93	-61.3416
Ag ₇ PdF ₁₀ BaGe ₇ N ₁₀ 6	161.15	-15.4188	AgPd ₂ F ₄ _SrNb ₂ O ₄ _3	205.03	-60.242

A ~ DdE DolrE 2	200.12	166 526	$A \sim \text{PdE}$ Ni(A ~ 0) 6	254 16	6 5205
Ag ₆ Pur_Bairr ₆ _5	209.12	-100.320	$Ag_2PdF_4_NI(AsO_2)_2_0$	234.10	-6.3203
$Ag_{17}Pd_{11}F_KAI_{11}O_{17}_6$	209.27	-3.59357	AgPd ₁₄ F_NaAlB ₁₄ _1	255.40	-84.4417
$Ag_{19}Pd_5F_{32}Mg_5Co_{19}O_{32}1$	210.74	-60.5389	$Ag_{19}Pd_{32}F_5Mg_5Co_{19}O_{32}2$	264.11	-14.9074
Ag ₃ PdF ₉ _HoTa ₃ O ₉ _1	211.83	-41.6532	$Ag_{17}Pd_{57}F_{19}Na_{17}(WO_3)_{19}3$	267.50	-23.7761
$Ag_{57}Pd_{17}F_{19}Na_{17}(WO_3)_{19}1$	215.57	-23.4868	Ag ₉ Pd ₄ F_H ₉ BrO ₄ _5	278.58	-51.2542
$Ag_4PdF_{12}_ThV_4O_{12}_1$	215.79	-87.4634	$Ag_{64}Pd_{103}F_7Ba_7Al_{64}O_{103}5$	283.41	-8.35988
$Ag_{21}Pd_{3}F_{32}Co_{21}Cu_{3}O_{32}1$	216.06	-203.723	$Ag_2PdF_4_Co(NiO_2)_2_3$	285.38	-47.2514
$Ag_6PdF_{16}_BaTa_6O_{16}_4$	217.49	-40.0768	$Ag_2Pd_2F_Cr_2Ir_2C_5$	288.27	-60.956
Ag ₄ PdF ₆ Ca ₄ PtO ₆ 1	217.73	-11.5515	AgPd ₁₆ F ₁₀ Ba(H ₈ O ₅) ₂ 1	289.17	-29.415
$Ag_{15}Pd_2F_{32}_K_2Ta_{15}O_{32}_3$	218.24	-58.4425	Ag ₁₀₃ Pd ₆₄ F ₇ Ba ₇ Al ₆₄ O ₁₀₃ 6	292.47	-42.6644
AgPdF ₆ _LiWF ₆ _2	220.04	-30.3693	$AgPd_{16}F_8_Mn_8PbO_{16}_1$	293.24	-9.19462
$AgPd_2F_5_Ti_2CoO_5_2$	224.50	-3.01931	$Ag_3Pd_2F_6_Na_2Nb_3O_6_1$	294.64	-97.214
AgPdF ₃ _ScGaO ₃ _4	227.19	-40.0807	$Ag_{12}PdF_{19}EuAl_{12}O_{19}3$	295.13	-13.8397
$Ag_2Pd_3F_8_Ca_2V_3O_8_1$	228.04	-64.2628	AgPdF4_TlAsO4_6	295.59	-42.7866
AgPdF ₃ _TiFeO ₃ _5	232.93	-132.594	$Ag_6PdF_{18}_Tl(WO_3)_6_6$	298.53	-127.332
$AgPd_{13}F_2_LiB_{13}C_2_6$	233.40	-114.802	AgPdF ₄ _GdAsO ₄ _5	308.37	-69.1169
$Ag_5PdF_8_Co_5NiS_8_2$	234.56	-35.0695	$AgPd_2F_V_2GaN_6$	326.67	-138.389
Ag ₂ PdF ₅ _TmMn ₂ O ₅ _6	238.09	-73.4033	$Ag_{3}Pd_{30}F_{10}Na_{3}(WO_{3})_{10}3$	327.16	-1.64385
$Ag_{64}Pd_{7}F_{103}Ba_{7}Al_{64}O_{103}3$	239.82	-5.47458	$AgPd_2F_4_Fe_2NiO_4_1$	340.35	-8.03935
$Ag_4Pd_{17}F_4_Ni_{17}(GeSe)_4_2$	240.00	-126.092	AgPdF2_Mo2CN_1	348.65	-23.4447
$Ag_3Pd_5F_{12}_Sm_3Al_5O_{12}_1$	240.80	-2.26215	$Ag_2Pd_2F_{11}_Ta_2Mo_2O_{11}_1$	353.77	-32.8894
$Ag_5Pd_3F_{12}_Tm_3Al_5O_{12}_1$	242.02	-26.9374	$Ag_2PdF_4_Zn(CuO_2)_2_3$	356.11	-35.6304
$Ag_2PdF_3_TaZn_2N_3_5$	242.11	-171.101	$Ag_2Pd_{21}F_6_Al_2(Ni_7B_2)_3_2$	376.31	-49.9314
$Ag_3PdF_6_Ni(PtO_2)_3_1$	245.42	-40.8828	$Ag_5Pd_{16}F_7_Li_5Mn_7O_{16}_4$	406.53	-118.646
$Ag_{7}Pd_{27}F_{9}Na_{7}(WO_{3})_{9}3$	245.80	-0.71893	AgPd ₂ F ₇ _TiV ₂ O ₇ _6	410.70	-4.63566
$Ag_{16}Pd_{10}F_Ba(H_8O_5)_2_5$	246.00	-50.1547	AgPdF2_LiMoN2_6	411.51	-35.3713
$Ag_{19}Pd_{12}F_EuAl_{12}O_{19}_6$	246.55	-53.6564	AgPd ₂ F_SrCuO ₂ _5	425.25	-49.1451
Ag ₇ PdF ₁₂ Y ₇ HoO ₁₂ 1	250.03	-18.8944	$Ag_{3}Pd_{32}F_{21}Co_{21}Cu_{3}O_{32}5$	441.43	-6.77787
$Ag_4Pd_{12}F_3_Mn_{12}Ge_4N_3_5$	485.80	-15.0086	$Ag_6PdF_{18}Rb(WO_3)_6_6$	275.56	-119.357

AgPd ₃ F_LaAlO ₃ _5	504.54	-50.793	$Ag_2PdF_8_Co(ReO_4)_2_3$	277.75	-45.0651
AgPd ₂ F ₄ _Co(NiO ₂) ₂ _1	510.31	-4.00677	Ag ₃ PdF_AcGaO ₃ _1	610.61	-15.2797
Ag ₅ Pd ₈ F_LiAl ₅ O ₈ _1	546.45	-28.4269	AgPd ₃ F_CaH ₃ Pd_5	648.44	-16.9269
$Ag_2PdF_8_CaCu_2F_8_1$	267.95	-56.2466	Ag ₂ Pd ₄ F_Be(CoO ₂) ₂ _5	1110.23	-90.5589
$AgPd_{28}F_2Mg(AlB_{14})_24$	273.23	-37.352	$AgPd_4F_2_Be(CoO_2)_2_2$	1437.81	-15.9133
$Ag_2Pd_2F_7_Sc_2Pt_2O_7_3$	273.96	-111.156			

	Composition	Symmetry	^E d (meV/atom)
	Ag ₃ PdF ₇ _Er ₃ TaO ₇	<i>p</i> 1	27.43
	$Ag_4Pd_3F_{12}Lu_4Hf_3O_{12}$	$P\bar{1}$	28.75
	Ag ₃ PdF ₇ _Sm ₃ MoO ₇	$P2_{1}2_{1}2_{1}$	29.86
	$Ag_2PdF_5Na_2VF_5$	$P2_l/c$	36.97
	$Ag_3Pd_2F_{12}Ga_2(MoO_4)_3$	$P2_l/c$	38.33
	Ag ₃ Pd ₁₀ F ₃₀ Na ₃ (WO ₃) ₁₀	<i>P2/m</i>	42.72
	$AgPd_{11}F_{33}La(WO_3)_{11}$	$P\bar{1}$	43.08
	AgPd ₇ F ₁₉ _PrTa ₇ O ₁₉	<i>р</i> б _{с2}	46.29
	AgPd ₉ F ₂₇ Na(WO ₃) ₉	R ³	48.46
	$AgPd_{3}F_{8}NaSb_{3}O_{8}$	$P2_l/c$	48.83
	$Ag_2Pd_4F_{13}_Na_2W_4O_{13}$	<i>C2/m</i>	51.75
	$AgPdF_5_MgCuF_5$	C2/c	52.67
	$Ag_3PdF_8_Ho_3ReO_8$	$P2_l/c$	53.15
ML+DFT predicted metastable phase	$Ag_6Pd_8F_{25}_Ta_8Pb_6O_{25}$	<i>C2</i>	58.84
(CGCNN-1 and CGCNN-2)	$AgPd_6F_{18}$ Tl(WO ₃) ₆	P6/mmm	67.77
	$AgPd_{12}F_{33}_Ta_{12}MoO_{33}$	<i>C2</i>	76.42
	$AgPd_4F_8NaTa_4O_8$	Cm	76.49
	$Ag_{3}PdF_{12}Cu_{3}SbF_{12}$	$Im^{3}m$	81.41
	$AgPdF_6_NaVF_6$	Pnma	83.18
	$Ag_3Pd_3F_{10}Tl_3Os_3O_{10}$	I4 ₁ /amd	83.53
	AgPd ₈ F ₁₆ BaTi ₈ O ₁₆	<i>C2</i>	85.26
	$Ag_5Pd_{13}F_{30}Mg_5Ti_{13}O_{30}$	Pm	90.14
	$AgPd_9F_{25}Nb_9VO_{25}$	<i>I</i> 4	90.23
	$Ag_3PdF_6_Ca_3WO_6$	R3	90.91
	$AgPd_{3}F_{12}Cu_{3}SbF_{12}$	$Im\overline{3}m$	93.99
	$Ag_3PdF_6Pr_3GaO_6$	$Cmc2_1$	94.33
	$Ag_3Pd_9F_{20}_Mg_3Ti_9O_{20}$	Cm	97.36
	AgPdF ₅ _ZnCuF ₅	$P2_{l}/c$	99.55

	$AgPd_4F_{10}ZrU_4O_{10}$	P1	10.73
	AgPdF5_CaCuF5	$P2_{l}/c$	20.11
	AgPdF4_TbSbO4	РĪ	28.33
	$Ag_6PdF_{12}La_6WO_{12}$	RЗ	29.27
	AgPd ₃ F ₇ _Er ₃ TaO ₇	Pl	29.66
	$Ag_3PdF_{15}CaAs_3F_{15}$	$P2_{1}2_{1}2_{1}$	33.99
	$Ag_3Pd_2F_{12}Dy_2(SeO_4)_3$	Pbcn	34.36
	Ag ₃ PdF ₇ _Er ₃ SbO ₇	$C222_{1}$	36.22
	$AgPd_4F_{12}K(WO_3)_4$	P3m1	37.02
	$Ag_2Pd_2F_7_Sm_2Mn_2O_7$	$Fd^{3}m$	38.04
	AgPd ₅ F ₁₃ NaSb ₅ O ₁₃	Ama2	42.92
	$Ag_3Pd_2F_{12}Ho_2(SeO_4)_3$	$R^{3}c$	43.53
	AgPd ₃ F ₉ _Tl(WO ₃) ₃	P6mm	44.89
	$AgPd_2F_6_Ta_2PbO_6$	Pnma	45.49
ML+DFT predicted metastable phase	$AgPd_2F_6_Ga(SiNi_3)_2$	Pm	46.16
(CGCNN-1)	AgPd ₃ F ₉ _GdTa ₃ O ₉	$P2_l/m$	46.74
	$Ag_3Pd_2F_{12}Y_2Cr_3O_{12}$	Fddd	51.42
	$Ag_2Pd_5F_{12}Lu_5(ReO_6)_2$	<i>C2/m</i>	52.14
	$Ag_3Pd_2F_9Pr_3Re_2O_9$	$P^{\overline{1}}$	52.16
	Ag_3Pd_{17}F_{47}_Sm_3Ta_{17}O_{47}	<i>P2/m</i>	54.49
	$Ag_2Pd_2F_7_Ta_2Pb_2O_7$	$Cmc2_1$	55.49
	$Ag_3Pd_4F_{13}Nb_4Pb_3O_{13}$	Pmma	55.69
	$AgPd_2F_6_Tm_2TeO_6$	$P2_{1}2_{1}2_{1}$	56.29
	$Ag_4Pd_2F_{15}_Dy_2Mo_4O_{15}$	$P2_{1}/c$	57.85
	AgPdF ₄ _EuSeO ₄	$P2_{1}/c$	58.84
	$Ag_4Pd_6F_{19}_Ta_6Pb_4O_{19}$	Imma	59.61
	AgPdF5_NbVO5	Pnma	60.46
	$Ag_3Pd_{14}F_{28}Ba_3(RhO_2)_{14}$	PĪ	61.22
	$AgPd_{6}F_{18}Rb(WO_{3})_{6}$	Pnnm	61.46
	E < 100 mo	Vlatom	

Table S5 The novel Ag-Pd-F metastable compounds with $E_d < 100 \text{ meV}/\text{atom}$ using machine-learning (ML), including the Ag-Pd-F structures, along with the space group symmetries and E_d values by the CGCNN-1 and CGCNN-2 model.

	•		
	AgPdE ₆ ZnFeF ₆ Ag2PdF7 Sr2AlH7	$C^{R_{3}}_{2/c}$	
	$\begin{array}{c} Ag_2Pd_2F_7 Tb_2Ti_2O_7\\ Ag_5Pd_4F_{15} Sr_5Ta_4O_{15} \end{array}$	$P_{P_{c_{l}}}^{P_{c_{l}}}$	68.03 63.94
	$\begin{array}{c} AgPd_2F_{12} CaAs_2F_{12} \\ AgPd_6F_{16} BaTa_6O_{16} \end{array}$	$P^{\overline{4}}m^{2}$ Amm2	68.46 64.62
	$\begin{array}{c} AgPd_{6}F_{12} \ Lu_{6}TeO_{12} \\ Ag_{3}Pd_{4}F_{12} \ Lu_{4}Hf_{3}O_{12} \end{array}$	₿Ī	69.19 65.56
	AgPd ₃ F ₈ Ho ₃ ReO ₈ Ag ₄ Pd ₃ F Ti ₄ CN ₃	P2/c R3m	69.53 66.43
	$Ag_5Pd_5F_{16}La_5Mn_5O_{16}$	P1	69.73
	$Ag_7Pd_9F_{27}Na_7(WO_3)_9$	PI	69.88
	$AgPdF_6_LiFeF_6$	$P4_2nm$	71.39
	$Ag_5Pd_2F_{12}_Tb_5(RuO_6)_2$	C2/m	72.44
	$Ag_4Pd_3F_{12}_Mn_{12}Ge_4N_3$	P4/m	74.88
	$Ag_4Pd_2F_9_Sr_4Ru_2O_9$	P321	77.44
	$AgPdF_4_NaYF_4$	PI	82.55
	$Ag_{14}Pd_{10}F_{39}Nb_{10}Pb_{14}O_{39}$	Amm2	84.03
redicted metastable nhase	$Ag_3Pd_5F_{12}_La_3Sb_5O_{12}$	I ⁴ 3m	86.43
(CGCNN-1)	$Ag_{21}Pd_{14}F_{47}Sr_{21}Fe_{14}O_{47}$	P^1	86.51
(continued)	$AgPd_2F_6_Tm_2WO_6$	P2/c	90.34
	$AgPdF_6_LiMnF_6$	<i>R</i> 3	90.48
	AgPdF ₃ _YReN ₃	Pnma	90.49
	Ag ₈ Pd ₃ F_Ti ₈ Cu ₃ Ni	P4/mmm	90.57
	$AgPd_2F_{12}BaAs_2F_{12}$	$Pm^{3}m$	92.35
	$AgPd_{13}F_{33}_NaNb_{13}O_{33}$	PI	93.03
	$Ag_{3}Pd_{16}F_{32}Rb_{3}Mn_{16}O_{32}$	$P\bar{1}$	93.68
	$Ag_2PdF_{12}CaCr_2F_{12}$	$P\bar{1}$	94.03
	$AgPd_2F_6_Hg(SbO_3)_2$	P ³ 1m	94.76
	$AgPd_6F_{12}Rb(IrO_2)_6$	<i>I4/m</i>	94.79
	$Ag_{12}Pd_8F_3Al_3(V_3C_2)_4$	<i>P6₃/mcm</i>	95.68
	$Ag_2Pd_8F_{19}U_8Bi_2O_{19}$	PI	98.37
	AgPdF ₄ _EuSeO ₄	$P2_{I}/c$	99.37

ML+DFT predicted metastable phase

(CGCNN-1) (continued)

	$\begin{array}{c} AgPdF_7 YPtF_7\\ Ag_{12}Pd_8F_{27} Sr_{12}Fe_8O_{27}\end{array}$	P_{P1}^{2}/c	31:82
	Ag ₃ PdF ₈ NaSb ₃ O ₈ Ag ₂ PdF ₆ Tm ₂ WO ₆	$P2_1/c$ P2/c	33.79 19.62
	$\begin{array}{c} \operatorname{Ag_{3}Pd_{2}F_{12}}_{\operatorname{Ag_{4}PdF_{10}}}\operatorname{Cr_{3}(FeO_{6})_{2}}\\ \operatorname{Ag_{4}PdF_{10}}_{\operatorname{ZrU_{4}O_{10}}}\end{array}$	$P2_{I}/c$	33.98 23.36
ML+DFT predicted metastable phase	$AgPdF_4$ MgTeO ₄ Ag ₄ Pd ₃ F ₁₂ Lu ₄ Zr ₃ O ₁₂	$P_{I}^{2/c}$	34.20 24.74
(CGCNN-2)	AgPdF ₄ InSbO ₄ 1 Ag2Pd2F ₇ Tm2Ti2O ₇	$P2_{l}/c$	35.78 26.77
	AgPdF ₄ InSbO ₄ 2	$\frac{P2_1}{c}$	36.03
	AgPd ₃ F ₉ _HoTa ₃ O ₉	$P2_1/m$	36.27
	AgPdF4_NbGaO4	<i>C2/m</i>	37.22
	Ag ₂ PdF ₅ _Ti ₂ CoO ₅	Стст	39.27
	$Ag_{25}Pd_{11}F_{60}Mg_{11}Ti_{25}O_{60}$	<i>P1</i>	39.46
	AgPdF ₃ _YMoN ₃	C2/c	41.62
	Ag ₃ PdF ₇ _Lu ₃ SbO ₇	C2221	42.02
	AgPd ₃ F ₈ _LiCr ₃ O ₈	Pnnm	42.49
	$Ag_5Pd_2F_{12}Y_5U_2O_{12}$	<i>P1</i>	43.18
	$Ag_2PdF_6_Pr_2WO_6$	C2/c	45.32
	AgPdF ₃ _LuGaO ₃	P6 ₃ cm	46.84
ML+DFT predicted metastable phase	$Ag_6PdF_{12}Lu_6WO_{12}$	<i>R</i> ³	47.39
(CGCNN-2)	Ag ₂ PdF ₆ _LiCu ₂ F ₆	P42/mnm	47.93
(continued)	Ag ₁₃ Pd ₅ F ₃₀ Mg ₅ Ti ₁₃ O ₃₀	Pm	49.59
	AgPdF5_ZnCuF5	$P2_{l}/c$	50.02
	AgPdF ₄ _LiAgF ₄ _1	<i>C2/c</i>	51.67
	AgPdF ₄ _LiAgF ₄ _2	<i>C2/c</i>	51.71
	Ag ₃ PdF ₈ TaSb ₃ O ₈	Pc	52.11
	$AgPd_2F_8$ _Co(ReO ₄) ₂	$P\bar{3}ml$	53.89
	Ag ₂ PdF ₆ _Sb ₂ WO ₆	$P2_{I}$	54.72
	AgPdF ₄ _CuTeO ₄	Cmmm	57.18
	$Ag_7Pd_2F_{15}Mg_2Ti_7O_{15}$	$P2_{l}/m$	64.51
	1		

Fig S1 Histogram representing the distribution of the number of elements in each crystal in the training dataset

Fig S2 Loss curves of CGCNN model training set and validation set

Fig S3 Direct dissociation path for the formate oxidation reaction. $HCOO^-$ initially forms $HCOO^{*-}_{bi}$ on a clean catalyst surface. Then $HCOO^{*-}_{bi}$ transitions to a $HCOO^{*-}_{mo}$, which is more favorable for the reaction. Subsequently, the C-H bond in $HCOO^{*-}_{mo}$ breaks, resulting in the formation of an H^* and CO₂. Ultimately, the reaction products are H and CO₂, with the release of two electrons. The atoms of H, C, and O are represented by white, brown, and red spheres, respectively.

Element replacement and lattice scaling codes

import os import csv from itertools import permutations from pymatgen.core import Structure from pymatgen.transformations.standard_transformations import SubstitutionTransformation

original_folder_path = " "
new_folder_path = " "
csv_file_path = " "

file_list = [f for f in os.listdir(original_folder_path) if f.endswith(".cif")] # Get the list of all files ending with ".cif" in the folder

os.makedirs(new_folder_path, exist_ok=True) # Create the folder to save the new crystal structures

structure_info = [] # Create an empty list to save the new CIF file names and their chemical formulas

Loop over scaling factors from 0.96 to 1.04 in intervals of 0.02
scaling_factors = [round(x, 2) for x in list((i / 100) for i in range(96, 105, 2))]

Iterate over each original crystal structure file

for scale_factor in scaling_factors:

for file_name in file_list:

file_path = os.path.join(original_folder_path, file_name) # Build the full path of the original crystal structure file
structure = Structure.from_file(file_path) # Read the original crystal structure file

original_formula = structure.composition.reduced_formula # Get the chemical formula of the crystal structure

scaled_structure = structure.copy()

scaled_structure.scale_lattice(scale_factor)

 $elements = list(set([site.species_string for site in structure.sites])) # Get all the element types in the crystal structure and determine the order to replace with Ag, Pd, and F$

replacements = ["Ag", "Pd", "F"]

 $substitution_mapping = \{elements[i]: replacements[i] \text{ for } i \text{ in } range(len(elements))\} \ \# \text{ Create the substitution} mapping dictionary}$

unique_permutations = list(permutations(replacements)) # Generate all unique permutations

Iterate over all permutations

for i, perm in enumerate(unique_permutations, start=1):

permutation_mapping = {elements[i]: perm[i] for i in range(len(elements))} # Create the substitution mapping dictionary

substitution = SubstitutionTransformation(permutation_mapping) # Create substitution transformation object

new_structure = substitution.apply_transformation(structure) # Apply substitution transformation and get the substituted crystal structure

 $new_formula = new_structure.composition.reduced_formula \ \# \ Get \ the \ chemical \ formula \ of \ the \ substituted \ crystal \ structure$

Build the new file path

 $new_file_name = f'' {new_formula}_{original_formula}_{scale_factor}_{i}.cif''$

new_file_path = os.path.join(new_folder_path, new_file_name)

new structure.to(filename=new file path) # Write the substituted crystal structure to the new file

structure_info.append([new_file_name, original_formula]) # Add the new CIF file name and its chemical formula to the list

Save the new CIF file names and chemical formulas to a CSV file

with open(csv file path, 'w', newline=") as csvfile:

writer = csv.writer(csvfile)

for info in structure info:

 $new_formula = info[1].replace("Ag", "Ag").replace("Pd", "Pd").replace("F", "F") # Replace the chemical formula elements with the "AgPdF" formula$

writer.writerow([info[0], "1"]) # Replace the second column with "1"

The POSCAR file for Ag₂PdF₆_La₂WO₆

Ag8 Pd4 F24

1.000000000000000

-5.2378656646866135	-0.0000110436408460	0.0000112985289491
-0.0000287512389392	9.7893631527383835	0.0000370723342309
-0.0000615893699187	0.0000516225476188	-11.2539799866115651
Ag Pd F		

8 4 24

Direct

0.0210276948064976 0.3541515448307102 0.9063550707234547 0.9933391141111467 0.3132991069525377 0.3499592522214058 0.5066600741578757 0.6867013833799870 0.8499593642681331 $0.4789728563689560 \quad 0.6458494874134036 \quad 0.4063555472681889$ $0.5210253123649542 \ \ 0.1458529303343816 \ \ 0.0936435220045648$ 0.4933361838415096 0.1866987474585610 0.6500380069201315 0.0066642049726911 0.8133015115784407 0.1500384188629528 0.9789701348817923 0.8541470569139274 0.5936443437647605 0.9992126486503063 0.9972284128486593 0.8714158578344834 0.5007858850602820 0.0027719048739357 0.3714159466372048 0.4992119759481211 0.5027745458144153 0.1285844743413537 0.0007893215618612 0.4972254971261832 0.6285843492440309 0.7843953602463106 0.6358242163913852 0.5501372282322413 0.8023773683065483 0.5193982025084817 0.7769587957408408 0.7801311362260482 0.8619104141434002 0.7881422430315372 0.7216172344799858 0.8491427845355177 0.3219809915416071 0.7815981975108416 0.3473844894155113 0.5717766816826811 0.8059820184646982 0.9760844330430548 0.0211653699587062 0.6940164678939225 0.0239159308911794 0.5211646702755572 0.7184041375547962 0.6526151910796893 0.0717760631896200 0.7783827912084504 0.1508573320980829 0.8219806307455629 0.71986878335640180.13808913080597450.28814112051802050.69762218449949700.48060181731708840.27695876256107390.71560491667968440.36417503825773340.05013737404809520.28439620788072860.86416939627667140.44986150406338140.30237792259320550.98060182882984230.22304117129057320.28012844281743090.63809080013760620.21185981243939190.22162012080263380.65085673129946130.67801789516846020.28159224388287250.15261065382495760.42822725685324450.30597924750474590.52392011940234890.97883666796209500.19402262261396280.47607954430402670.47883613923936510.21840616601344850.84739012410859300.92822764349821500.27838094092788830.34914323269755150.17801804287185570.21987334265305720.36190976375519880.71185950700883850.19762266543219540.01939823695028590.72304125381687890.21560209372485080.13583148840078340.9498600101711682

The POSCAR file for Ag₂PdF₆_Na₂PdF₆

Ag6 Pd3 F18

1.000000000000000

-0.0000093409817735	0.0000163519957456	-5.1851794796105093
-4.9012816010619877	-8.4893623608309543	-0.0000187777653804
-4.9013072414303922	8.4893563452364038	0.0000345946164288
Ag Pd F		

6 3 18

Direct

0.0000000484423452 0.0000004737649988 0.6299186148559962 0.5000008590292211 0.9999992746823381 0.2960225469528441 0.000000973574359 0.6299190836888621 0.0000000384184773 0.5000001342375526 0.7039756602249594 0.7039749270154485 0.4999990850130231 0.2960232191240836 0.9999985219627376 0.9999998862188306 0.3700819815281441 0.3700815472896714 0.4967394126148739 0.6666668534651450 0.3333329416476190 0.0000002271203314 0.0000002355390905 0.99999997944022141 0.5032603246464242 0.3333334832201587 0.66666662834309918 0.2089371618571508 0.9084489148215861 0.8051598761027017 0.7106693644365433 0.7844848096902032 0.5244788629739664 0.2827135812390831 0.8578081956722574 0.4053253962505495 0.2827137351403659 0.5946751299563047 0.4524815371925456 0.7106690110533503 0.7399947457607012 0.2155158605426117 0.2089365319145318 0.8967107737576818 0.0915497349219737 0.7910619581255034 0.8051604455072501 0.9084485475466645 0.7106694309387177 0.4755211330921991 0.2600043238088179 0.2827131943570971 0.5475174268622652 0.1421919846972611 0.2089385292660143 0.1948400898454049 0.1032896373105251

0.28933040221196430.52447941460351380.78448395924688920.71728584806527700.40532603992024300.85780731920965710.71728635986576340.45248228092419960.59467467908455230.28933090100566040.21551605691102300.73999388054862150.79106372091453640.09155107325496650.89671123741307150.28933080000321840.26000455218381150.47552057622989520.71728711871388020.14219217857379190.54751689148323520.79106329621127710.10329013342478590.1948397694604632

The POSCAR file for AgPd₂F₁₂CaCr₂F₁₂

Ag1 Pd2 F12

1.000000000000000

-1.7720184519496809	-4.3521995859564724	2.2559442904223692
0.0496795107017304	0.0395522959333229	5.5156942684974535
-7.2179952719352558	4.1498485197443280	2.3367316492112189
Ag Pd F		

1 2 12

Direct

The POSCAR file for Ag₂PdF₆_Sm₂WO₆

Ag8 Pd4 F24

1.000000000000000

-5.6813877471091638 -0.0000000233834993 0.0000001485219523 0.000000039921818 -8.0150706979097510 -1.0336843939654468 -0.0000003324699368 -1.6493023765156352 12.7885127800194969 Ag Pd F

8 4 24

Direct

0.2104946464862589 0.0000000327487797 0.7500000206055546 0.7895053535137838 0.9999999672512203 0.24999999793944454 0.7500000487127636 0.2500000154653534 0.5964268561407552 0.2499998936100312 0.2500000422928039 0.0964268557438318 0.2895052681257173 0.5000000317615516 0.74999999792327046 0.7104947318741263 0.4999999682384484 0.2500000207672954 0.7500001063898054 0.7499999577071321 0.9035731442562037 0.2499999512870730 0.7499999845345826 0.4035731438592376 0.7499998343785066 0.2499999810651303 0.8703891880577159 0.2500001068180850 0.2499999824657664 0.3703891875065054 0.7499998931817871 0.7500000175344113 0.6296108124934947 0.2500001656213655 0.7500000189350473 0.1296108119422555 0.8836899692561944 0.0242343203102675 0.8697479185591979 0.5225774976079561 0.1880233551492224 0.9765943352743155 0.1163099295080073 0.0242343041962738 0.3697478977789491 0.5189593302386883 0.1967008045500133 0.7572444998357949 0.4774222461082602 0.1880233534593173 0.4765943985512018 0.9810406578803763 0.3032992826620375 0.7572446411872374 0.4810407482183678 0.1967007988100999 0.2572445467487893 0.0225780630456014 0.3119764951627432 0.4765944915700424 0.6163096975818774 0.4757656790736066 0.8697479573968456 0.0189594224509562 0.3032992753964325 0.2572445944786734 0.6163098012278936 0.5242343377885955 0.6302520230719191 0.0225783209642443 0.6880235025927944 0.0234054441883039 0.9774216790358340 0.3119764974069569 0.9765945558116745 0.3836901987720495 0.4757656622114398 0.3697479769281234 0.9810405775489228 0.6967007246035252 0.7427554055213054 0.3836903024180657 0.5242343209264287 0.1302520426031545 0.9774219369544769 0.6880235048370081 0.5234055084299721 0.5189592517817248 0.8032992011899424 0.7427554532510757 0.0189593421195027 0.6967007173379202 0.2427553588127697 0.5225777538916828 0.8119766465407395 0.5234056014486778 0.4810406697614042 0.8032991954500289 0.2427555001642264 0.8836900704919999 0.9757656958037192 0.6302521022211289 0.4774225023919869 0.8119766448508344 0.0234056647257411 0.1163100307438128 0.9757656796897255 0.1302520814408520

The POSCAR file for $AgPd_2F_6_Ca_2H_6Os$

Ag1 Pd2 F6

1.00000000000000

1.6125945778894279	4.5611062453211790	2.7930957409145463	
1.6125945778894282	4.5611062453211790	-2.7930957409145445	
-3.2251891557788555	4.5611062453211790	0.0000000000000010	
Ag Pd F			

Direct

-0.00000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
0.75000000000000000	0.750000000000000000	0.75000000000000000
0.25000000000000000	0.25000000000000000	0.25000000000000000
0.2563756081384901	0.7436243918615029	0.2563756081384901
0.7436243918615029	0.2563756081384901	0.7436243918615029
0.2563756081384901	0.7436243918615029	0.7436243918615029
0.7436243918615029	0.2563756081384901	0.2563756081384901
0.2563756081384901	0.2563756081384901	0.7436243918615029
0.7436243918615029	0.7436243918615029	0.2563756081384901

The POSCAR file for Ag₂PdF₆_Ni(IO₃)₂

Ag4 Pd2 F12

1.000000000000000

5.0923456192213159 0.0000023179662980 -0.0000214378373468 0.0000074342592307 -0.0114124609920041 5.6857437843181993 -0.0000047181289273 -9.9210114288343103 -0.0203194566863506 Ag Pd F

4 2 12

Direct

0.4375285608754582 0.2499659682559467 0.0545466256108552 0.9375278046158485 0.7500341010239667 0.9454536659389122 0.9374812188253657 0.2499897398846777 0.3914343924395914 0.4374805471993684 0.7500096425405521 0.6085653716085355 0.4374290861970490 0.7499632457404780 0.2575988114776799 0.9374288033183471 0.2500363679176832 0.7424013339212621 0.2215687814547414 0.6057404233846272 0.1134888972764154 0.7215691381101114 0.3942585929338989 0.8865108825263843 0.2250527828442566 0.6043081768991687 0.4009433365042903 0.7250524274871333 0.3956910654871048 0.5990565660199821 0.6543040873127292 0.4607629838680579 0.2505998999618007 0.1543035166262977 0.5392367733853550 0.7494002327595958 0.1498242125622166 0.1043126134722466 0.5990832083461936 0.6498253772757335 0.8956873514001554 0.4009173999752494 0.2205503044301243 0.0391609485037472 0.2505718333160418 0.7205502497264412 0.9608388680568564 0.7494281068193192 0.1532612827492348 0.1058917570920989 0.8865419821184836 0.6532613083895177 0.8941083901533881 0.1134584683794167

The POSCAR file for Ag₃PdF₂₀_BiSb₃F₂₀

Ag3 Pd1 F20

1.000000000000000

0.1705107276830486	0.2557273200695028	-6.2019557109424674
-3.1311273942373550	7.8300336828971018	0.5876883094009085
8.4320200563841237	0.1200999707853954	0.5876883094009049
Ag Pd F		

3 1 20

Direct

-0.00000000000000 0.8001193278967861 0.1998806721032138 0.7890738194496250 0.2138026549708407 0.2131109325237569 0.2109261805503680 0.7868890674762434 0.7861973450291594 -0.00000000000000 0.1991814883120342 0.8008185116879588 0.7711607645618229 0.4490215867965235 0.2536776953380687 0.7774021001837106 0.2580176962095074 0.4502287692098691 0.2225978998162897 0.5497712307901451 0.7419823037904930 0.2288392354381699 0.7463223046619313 0.5509784132034765 0.0973676671936414 0.2397678484158340 0.2336466762241600 $0.9026323328063515 \ \ 0.7663533237758400 \ \ 0.7602321515841658$ 0.8082345787521873 0.3463171198460573 0.7574134358795396 0.7996445307576918 0.7501565227063650 0.3424292034244084 0.2003554692423010 0.6575707965755987 0.2498434772936422 $0.1917654212478128 \ \ 0.2425865641204606 \ \ 0.6536828801539432$ 0.7874480731607164 0.1531960706932752 0.9528519919690829 0.7869980032876955 0.9531801416047246 0.1516309885044222 0.2130019967123045 0.8483690114955778 0.0468198583952753 0.2125519268392840 0.0471480080309240 0.8468039293067180 0.4820750428415368 0.1780400461804444 0.1827445947991539 0.51792495715844900.81725540520083910.82195995381955590.14142170781599280.37280257652391110.98409034266297280.13807781386686480.98828425085975680.38006171048065820.86192218613314240.61993828951934190.01171574914025020.85857829218400730.01590965733702730.6271974234760886

The POSCAR file for AgPd₃F₂₀_BiSb₃F₂₀

Ag1 Pd3 F20

1.000000000000000

Ag Pd F		
8.7604105192487420	-0.1056817047386916	0.7027396784254634
-3.4658150010203870	8.0463710744150099	0.7027396784254922
0.0143043159684870	0.0214532213764780	-5.3967988433449365

1 3 20

Direct

0.0000000000000 0.1848018296611400 0.8151981703388388 -0.00000000000000 0.8086350102413929 0.1913649897586071 0.7867680950385331 0.2472555647535515 0.2411697475827965 0.2132319049614670 0.7588302524171823 0.7527444352464273 0.6508993479298635 0.4369820005738691 0.2453834377950451 0.7489143027711649 0.3063655018601829 0.4655699554636076 0.2510856972288065 0.5344300445363993 0.6936344981398382 0.3491006520701507 0.7546165622049833 0.5630179994261522 0.1092849071736915 0.3632153236518902 0.2941138111858437 0.8907150928263443 0.7058861888141494 0.6367846763481384 0.8256009421167467 0.3640243852227412 0.8150809932460388 0.9250126177761819 0.8459573030664167 0.4052780327735015 0.0749873822238038 0.5947219672264914 0.1540426969335549 0.1743990578832607 0.1849190067539539 0.6359756147772445 0.7991439970765313 0.1619236792129179 0.9936517863043225 $0.9550208815511164 \ \ 0.0482495511885415 \ \ 0.2352081606955478$ 0.0449791184489048 0.7647918393044377 0.9517504488114441 0.2008560029234686 0.0063482136956918 0.8380763207870398 0.4676520881180033 0.1234648875156138 0.1784133549075489 0.53234791188196830.82158664509243670.87653511248438620.26721575771987460.33509824252634200.97016056318325480.33567190723985940.89355707000805670.27549951634518830.66432809276012620.72450048365482580.10644292999195030.73278424228011130.02983943681675250.6649017574736652

REFERENCES

1. T. Xie and J. C. Grossman, *Phys. Rev. Lett.*, 2018, **120**, 6.